β-Oxidation cycle reactions, which are key stages in the metabolism of fatty acids in eucaryotic cells and in processes with a significant role in the degradation of acids used by microbes as a carbon source, have also found application in biotransformations. One of the major advantages of biotransformations based on the β-oxidation cycle is the possibility to transform a substrate in a series of reactions catalyzed by a number of enzymes. It allows the use of sterols as a substrate base in the production of natural steroid compounds and their analogues. This route also leads to biologically active compounds of therapeutic significance. Transformations of natural substrates via β-oxidation are the core part of the synthetic routes of natural flavors used as food additives. Stereoselectivity of the enzymes catalyzing the stages of dehydrogenation and addition of a water molecule to the double bond also finds application in the synthesis of chiral biologically active compounds, including medicines. Recent advances in genetic, metabolic engineering, methods for the enhancement of bioprocess productivity and the selectivity of target reactions are also described.
Brenna, E.; Fuganti, C.; Serra, S. Enantioselective perception of chiral odorants. Tetrahedron: Asymmetry 2003, 14, 1–42.
[3]
Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Keβeler, M.; Stürmer, R.; Zelinski, T. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Edit 2004, 43, 788–824.
[4]
Schrader, J.; Etschmann, M.M.W.; Sell, D.; Hilmer, J.M.; Rabenhorst, H. Applied biocatalysis for the synthesis of natural flavor compound—current industrial processes and future prospects. Biotechnol. Lett 2004, 26, 463–472.
[5]
Kieslich, K. Microbial side-chain degradation of sterols. J. Basic Microbiol 1985, 25, 461–474.
[6]
Vyas, K.P.; Kari, P.H.; Pitzenberger, S.M.; Halpin, R.A.; Ramjit, H.G.; Arison, B.; Murphy, J.S.; Hoffman, W.F.; Schwartz, M.S.; Ulm, E.H. Biotransformation of lovastatin. I. Structure elucidation of in vitro and in vivo metabolites in the rat and mouse. Drug Metab. Dispos 1990, 18, 203–211.
[7]
Prueksaritanont, T.; Ma, B.; Fang, X.; Subramanian, R.; Yu, J.; Lin, J.H. β-Oxidation of simvastatin in mouse liver preparations. Drug Metab. Dispos 2001, 29, 1251–1255.
[8]
Walker, V.; Mills, G.A. Urine 4-heptanone: A β-oxidation product of 2-ethylhexanoic acid from plasticizers. Clin. Chim. Acta 2001, 306, 51–61.
[9]
Magliano, P.; Flipphi, M.; Arpat, B.A.; Delessert, S.; Poirier, Y. Contributions of the peroxisome and β-oxidation cycle to biotin synthesis in fungi. J. Biol. Chem 2011, 286, 42133–42140.
[10]
Rorije, E.; Peijnenburg, W.J.G.M.; Klopman, G. Structural requirements for anaerobic biodegradation of organic chemicals: A fragment model analysis. Environ. Toxicol. Chem 1998, 17, 1943–1950.
[11]
Szentirmai, A. Microbial physiology of sidechain degradation of sterols. J. Ind. Microbiol 1990, 6, 101–116.
[12]
Crueger, A.; Crueger, W. Carbohydrates. In Biotechnology, A Comprehensive Treatise in 8 Volumes; Rehm, H.J., Reed, G., Ebel, H.F., Eds.; Verlag-Chemie: Weinheim, Germany, 1984; Volume 6a, pp. 421–457.
[13]
Schedel, M. Regioselective Oxidation of Aminosorbitol with Gluconobacter oxydans, Key Reaction in the Industrial 1-Deoxynojirimycin Synthesis. In Biotechnology, Biotransformations II; Rehm, H.J., Reed, G., Kelly,, D.R., Eds.; Verlag-Chemie: Weinheim, Germany, 2000; Volume 8b, pp. 295–311.
[14]
Waché, Y.; Aguedo, M.; Nicaud, J.M.; Belin, J.M. Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica. Appl. Microbiol. Biotechnol 2003, 61, 393–404.
[15]
Meyer, J. γ-Decalactone microbial production from alkyl ricinoleate by hydrolysis, β-oxidation, and chemical cyclisation of 4-hydroxy decanoic acid produced for flavoring and perfume. German Patent DE 4 18 February 1993.
[16]
Aguedo, M.; Ly, M.H.; Belo, I.; Teixeira, J.A.; Belin, J.M.; Waché, Y. The use of enzymes and microorganisms for the production of aroma compounds from lipids. Food Technol. Biotechnol 2004, 42, 327–336.
[17]
Mitsuhashi, K.; Iimori, M. Method for producing lactone. U.S. Patent US7,129,067, 31 October 2006.
[18]
Pagot, Y.; Endrizzi, A.; Nicaud, J.M.; Belin, J.M. Utilization of an auxotrophic strain of the yeast Yarrowia lipolytica to improve γ-decalactone production yields. Lett. Appl. Microbiol 1997, 25, 113–116.
[19]
Rabenhorst, J.; Gatfield, I. Method of producing γ-decalactone using Yarrowia lipolytica strain HR 145 (DSM 12397). U.S. Patent US6,451,565, 17 September 2002.
[20]
Escamilla-García, E.; Aguedo, M.; Gomes, N.; Choquet, A.; Belo, I.; Teixeira, J.A.; Belin, J.M.; Waché, Y. Production of 3-hydroxy-γ-decalactone, the precursor of two decanolides with flavouring properties, by the yeast Yarrowia lipolytica. J. Mol. Catal. B Enzym 2009, 57, 22–26.
[21]
Romero-Guido, C.; Belo, I.; Ta, T.M.N.; Cao-Hoang, L.; Alchihab, M.; Gomes, N.; Thonart, P.; Teixeira, J.A.; Destain, J.; Waché, Y. Biochemistry of lactone formation in yeast and fungi and its utilisation for the production of flavour and fragrance compounds. Appl. Microbiol. Biotechnol 2011, 89, 535–547.
[22]
Fickers, P.; Benetti, P.H.; Waché, Y.; Marty, A.; Mauersberger, S.; Smit, M.S.; Nicaud, J.M. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential application. FEMS Yeast Res 2005, 5, 527–543.
[23]
Waché, Y.; Laroche, C.; Bergmark, K.; Müller-Andersen, C.; Aguedo, M.; Le Dall, M.T.; Wang, H.; Nicaud, J.M.; Belin, J.M. Involvement of acyl coenzyme A oxidase isozymes in biotransformation of metyl ricinoleate into γ-decalactone by Yarrowia lipolytica. Appl. Environ. Microbiol 2000, 66, 1233–1236.
[24]
Waché, Y.; Aguedo, M.; Choquet, A. Role of β-oxidation enzymes in γ-decalactone production by the yeast Yarrowia lipolytica. Appl. Environ. Microbiol 2001, 12, 5700–5704.
[25]
Waché, Y.; Aguedo, M.; Le Dall, M.T.; Nicaud, J.M.; Belin, J.M. Optimization of Yarrowia lipolytica’s β-oxidation pathway for lactones production. J. Mol. Catal. B Enzym 2002, 153, 347–351.
[26]
Groguenin, A.; Waché, Y.; Garcia, E.E.; Aguedo, M.; Husson, F.; LeDall, M.T.; Nicaud, J.M.; Belin, J.M. Genetic engineering of the β-oxidation pathway in the yeast Yarrowia lipolytica to increase the production of aroma compounds. J. Mol. Catal. B Enzym 2004, 28, 75–79.
[27]
Guo, Y.; Song, H.; Wang, Z.; Ding, Y. Expression of POX2 gene and disruption of POX3 genes in the industrial Yarrowia lipolytica on the γ-decalactone production. Microbiol. Res 2012, 167, 246–252.
[28]
Aguedo, M.; Beney, L.; Waché, Y.; Belin, J.M. Mechanism underlying the toxicity of lactone aroma compounds towards the producing yeast cells. J. Appl. Microbiol 2003, 94, 258–265.
[29]
Feron, G.; Dufosse, L.; Pierard, E.; Bonnarme, P.; Quere, J.L.; Spinnler, H.E. Production, identification, and toxicity of γ-decalactone and 4-hydroxydecenoic acid from Sporidiobolus spp. Appl. Environ. Microbiol 1996, 62, 2826–2831.
[30]
Alchihab, M.; Destain, J.; Aguedo, M.; Wathelet, J.P.; Thonart, P. The utilization of gum tragacanth to improve the growth of Rhodotorula aurantiaca and the production of γ-decalactone in large scale. Appl. Biochem. Biotechnol 2010, 162, 233–241.
[31]
Boog, A.L.G.M.; Peters, A.L.J.; Roos, R. Process for producing δ-lactones from 11-hydroxy fatty acids. U.S. Patent US5,215,901, 1 June 1993.
[32]
Cardillo, R.; Fuganti, C.; Barbieri, M.; Cabella, P.; Guarda, P.A.; Allegrone, G.A. Process for the microbiological production of γ- and δ-lactones. U.S. Patent US5,168,054, 1 December 1992.
[33]
Gocho, S.; Tabogami, N.; Inagaki, M.; Kawabata, C.; Komai, T. Biotransformation of oleic acid to optically active γ-dodecalactone. Biosci. Biotechnol. Biochem 1995, 59, 1571–1572.
[34]
Hosoi, K.; Okawa, T. Production of γ-dodecalactone. Japanese Patent JP3,479,337, 3 October 2003.
[35]
Joo, Y.C.; Seo, E.S.; Kim, Y.S.; Kim, K.R.; Park, J.B.; Oh, D.K. Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia. J. Biotechnol 2012, 158, 17–23.
[36]
Saitoh, C.; Masuda, Y.; Yashiro, A.; Ishiguro, H. Process for producing hydroxylated fatty acid and δ-lactone. U.S. Patent US6,777,211, 17 August 2004.
[37]
Serrano-Carreon, L.; Hathout, Y.; Bensoussan, M.; Belin, J.M. Metabolism of linoleic acid or mevalonate and 6-pentyl-alpha-pyrone biosynthesis by Trichoderma species. Appl. Environ. Microbiol 1993, 59, 2945–2950.
[38]
Bonnarme, P.; Djian, A.; Latrasse, A.; Féron, G.; Giniès, C.; Durand, A.; Le Quéré, J.L. Production of 6-pentyl-α-pyrone by Trichoderma sp. from vegetable oils. J. Biotechnol 1997, 56, 143–150.
Smith, L.L. Steroids. In Biotechnology, A Comprehensive Treatise in 8 Volumes; Rehm, H.J., Reed, G., Ebel, H.F., Eds.; Verlag-Chemie: Weinheim, Germany, 1984; Volume 6a, pp. 31–78.
[43]
Van der Waard, W.F. Process for the microbiological preparation of steroids. Netherlands Patent 6,513,718, 22 October 1965.
[44]
Van der Geize, R.; Hessels, G.I.; Dijkhuizen, L. Method for the production of modified steroid degrading microorganisms and their use. U.S. Patent US0,189,390, 23 July 2009.
[45]
Fujimoto, Y.; Chen, C.S.; Szeleczky, Z.; Ditullio, D.; Sih, C.J. Microbial degradation of the phytosterol side chain. Enzymic conversion of 3-oxo-24-ethylcholest-4-en-26-oic acid into 3-oxochol-4-en-24-oic acid and androst-4-ene-3,17-dione. J. Am. Chem. Soc 1982, 104, 4718–4720.
[46]
Wang, F.Q.; Yao, K.; Wei, D.Z. From Soybean Phytosterols to Steroid Hormones. In Soybean and Health; El-Shemy, H.A., Ed.; InTech: Rijeka, Croatia, 2011; pp. 241–263.
[47]
Van der Geize, R.; Hessels, G.I.; Dijkhuizen, L. Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Δ1-dehydrogenase isoenzyme. Microbiology 2002, 148, 3285–3292.
[48]
Van der Geize, R.; Hessels, G.I.; van Gerwen, R.; van der Meijden, P.; Dijkhuizen, L. Unmarked gene deletion mutagenesis of kstD, Encoding 3-Ketosteroid δ(1)-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counterselectable marker. FEMS Microbiol. Lett 2001, 205, 197–202.
[49]
Van der Geize, R.; Hessels, G.I.; van Gerwen, R.; van der Meijden, R.; Dijkhuizen, L. Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid-9- alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol. Microbiol 2002, 45, 1007–1018.
[50]
Donova, M.V.; Egorova, O.V. Microbial steroid transformations: Current state and prospects. Appl. Microbiol. Biotechnol 2012, 94, 1423–1447.
[51]
Van der Geize, R.; Yam, K.; Heuser, T.; Wilbrink, M.H.; Hara, H.; Anderton, M.C.; Sim, E.; Dijkhuizen, L.; Davies, J.E.; Mohn, W.W.; et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc. Natl. Acad. Sci. USA 2007, 104, 1947–1952.
[52]
Wilbrink, M.H.; Petrusma, M.; Dijkhuizen, L.; van der Geize, R. FadD19 of Rhodococcus rhodochrous DSM43269, a steroid-coenzyme A ligase essential for degradation of C-24 branched sterol side chains. Appl. Environ. Microbiol 2011, 77, 4455–4464.
[53]
Liu, Y.; Chen, G.; Ge, F.; Li, W.; Zeng, L.; Cao, W. Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World J. Microbiol. Biotechnol 2011, 27, 759–765.
[54]
Wei, W.; Wang, F.Q.; Fan, S.Y.; Wei, D.Z. Inactivation and augmentation of the primary 3-ketosteroid-{γ}1-dehydrogenase in Mycobacterium neoaurum NwIB-01: Biotransformation of soybean phytosterols to 4-androstene-3,17-dione or 1,4-androstadiene-3,17-dione. Appl. Environ. Microbiol. 2010, 76, 4578–4582.
[55]
Egorova, O.V.; Nikolayeva, V.M.; Sukhodolskaya, G.V.; Donova, M.V. Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium spp. J. Mol. Catal. B: Enzym 2009, 57, 198–203.
[56]
Weber, A.; Kennecke, M. Process for the production of 4-androstene-3,17-dione and 1,4-androstadiene-3,17-dione from ergosterol with Mycobacterium. U.S. Patent US5,516,649, 14 May 1996.
[57]
Dovbnya, D.V.; Egorova, O.V.; Donova, M.V. Microbial side-chain degradation of ergosterol and its 3-substituted derivatives: a new route for obtaining of deltanoids. Steroids 2010, 75, 653–658.
[58]
Weber, A.; Kennekke, M.; Neef, G. Process for the production of 20-methyl-5,7-pregnadiene- 3β,21-diol derivatives using mycobacterium. U.S. Patent US5,429,934, 4 July 1995.
Steinmeyer, A.; Kirsch, G.; Neef, G.; Schwarz, K.; Thieroff-Ekerdt, R.; Wiesinger, H.; Haberey, M.; Fahnrich, M. Vitamin D derivatives with carbo- or heterocyclic substituents at C-25, a process for their production, intermediate products and their use for producing medicaments. U.S. Patent US6,600,058, 29 July 2003.
Malaviya, A.; Gomes, J. Androstenedione production by biotransformation of phytosterols. Bioresour. Technol 2008, 99, 6725–6737.
[63]
Atrat, P.; H?sel, P.; Richter, W.; Meyer, H.; H?rhold, C. Interactions of Mycobacterium fortuitum with solid sterol substrate particles. J. Basic Microbiol 1991, 31, 413–422.
[64]
Goetschel, R.; Bar, R. Formation of mixed crystals in microbial conversion of sterols and steroids. Enzyme Microb. Technol 1992, 14, 462–469.
[65]
Perfumo, A.; Smyth, T.J.P.; Marchant, R.; Banat, I.M. Production and Roles of Biosurfactants and Bioemulsifiers in Accessing Hydrophobic Substrates. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin, Germany, 2010; pp. 1501–1512.
[66]
Parales, R.E.; Ditty, J.L. Substrate Transport. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin, Germany, 2010; pp. 1545–1553.
[67]
Heipieper, H.J.; Cornelissen, S.; Pepi, M. Surface Properties and Cellular Energetics of Bacteria in Response to the Presence of Hydrocarbons. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin, Germany, 2010; pp. 1615–1624.
[68]
Korycka-Machala, M.; Rumijowska-Galewicz, A.; Dziadek, J. The effect of ethambutol on mycobacterial cell wall permeability to hydrophobic compounds. Pol. J. Microbiol 2005, 54, 5–11.
Mohn, W.W.; van der Geize, R.; Stewart, G.R.; Okamoto, S.; Liu, J.; Dijkhuizen, L.; Eltis, L.D. The actinobacterial mce4 locus encodes a steroid transporter. J. Biol. Chem 2008, 283, 35368–35374.
[71]
Perez, C.; Falero, A.; Llanes, N.; Hung, B.R.; Herve, M.E.; Palmero, A; Martii, E. Resistance to androstanes as an approach for androstandienedione yield enhancement in industrial mycobacteria. J. Ind. Microbiol. Biotechnol. 2003, 30, 623–626.
[72]
Huang, C.L.; Chen, Y.R.; Liu, W.H. Production of androstenones from phytosterol by mutants of Mycobacterium sp. Enzyme Microb. Technol 2006, 39, 296–300.
[73]
Dumas, B.; Brocard-Masson, C.; Assemat-Lebrun, K.; Achstetter, T. Hydrocortisone made in yeast: Metabolic engineering turns a unicellular microorganism into a drug-synthesizing factory. Biotechnol. J 2006, 1, 299–307.
[74]
Choudhary, M.I.; Erum, S.; Atif, M.; Malik, R.; Khan, N.T.; Atta-ur-Rahman. Biotransformation of (20S)-20-hydroxymethylpregna-1,4-dien-3-one by four filamentous fungi. Steroids 2011, 76, 1288–1296.
[75]
Gates, S.; Loria, R.M. Compositions for regulation of immune responses. U.S. Patent US5,776,921, 7 July 1998.
[76]
Kim, T.K.; Chen, J.; Li, W.; Zjawiony, J.; Miller, D.; Janjetovic, Z.; Tuckey, R.C.; Slominski, A. A new steroidal 5,7-diene derivative, 3β-hydroxyandrosta-5,7-diene-17β-carboxylic acid, shows potent anti-proliferative activity. Steroids 2010, 75, 230–239.
[77]
Hasegawa, J.; Nagashima, N. Production of Chiral β-Hydroxy Acids and Its Application in Organic Synthesis. In Stereoselective Biocatalysis; Patel, R.N., Ed.; Marcel Dekker: New York, NY, USA, 2000; pp. 343–363.
[78]
Meyers, A.I.; Hudspeth, R.A. Enantioselective synthesis of C3–C10 fragment (northeastern zone) of maytansinoids with 4-chiral centers (4S,5S,6R,7S). Tetrahedron Lett 1981, 22, 3925–3928.
[79]
Goodhoue, C.T.; Schafler, J.R. Preparation of l(+)-β-hydroxyisobutyric acid by bacterial oxidation of isobutyric acid. Biotechnol. Bioeng 1971, 13, 203–214.
[80]
Hasegawa, J.; Hamaguchi, S.; Ogura, M.; Watanabe, K. Production of β-hydroxycarboxylic acids from aliphatic carboxylic acids by microorganisms. J. Ferment. Technol 1981, 59, 257–262.
[81]
Hasegawa, J.; Ogura, M.; Kanema, H.; Noda, N.; Kawaharada, H.; Watanabe, K. Production of β-hydroxyisobutyric acid by Candida rugosa and its mutant. J. Ferment. Technol 1982, 60, 501–508.
[82]
Lee, I.Y.; Hong, W.K.; Hwang, Y.B.; Kim, C.H.; Choi, E.S.; Rhee, S.K.; Park, Y.H. Production of d-β-hydroxybutyric acid from isobutyric acid by Candida rugosa. J. Ferment. Bioeng 1996, 81, 79–82.
[83]
Kim, H.S.; Ju, J.Y.; Shin, C.S. Optimized fed-batch fermentation of l-β-hydroxyisobutyric acid by Yarrowia lipolytica. Bioproc. Biosyst. Eng 1999, 20, 189–193.
[84]
Kim, C.H.; Hong, W.K.; Lee, I.Y.; Choi, E.S; Rhee, S.K. Enhanced production of d-β-hydroxyisobutyric acid through strain improvement. J. Biotechnol. 1999, 69, 75–79.
[85]
Robinson, R.S.; Doremus, M.G. Method of preparing l-(+)-β-hydroxyisobutyric acid by fermentation. U.S. Patent US4,618,583, 21 October 1986.
[86]
Kamal, A.; Krishnaji, T.; Khan, M.N.A. Lipase-catalysed resolution of N-(3-cyano-2-hydroxy propan-1-yl)phthalimide: Synthesis of (R)-GABOB and (R)-carnitine. J. Mol. Catal. B: Enzym 2007, 47, 1–5.
[87]
Obón, J.M.; Maiquez, J.R.; Canovas, M.; Kleber, H.P.; Iborra, J.L. l(?)-Carnitine production with immobilized Escherichia coli cells in continuous reactors. Enzyme Microb. Technol 1997, 21, 531–536.
[88]
Meier, P.J. d-Carnitine Harmlos? In Carnitine in der Medizin; Gitzelmann, R., Baerlocher, K., Steinmann, B., Eds.; Shattauer: Stuttgart, Germany, 1987; pp. 101–104.
Engemann, C.; Elssner, T.; Kleber, H.P. Biotransformation of crotonobetaine to l(?)-carnitine in Proteus sp. Arch. Microbiol 2001, 175, 353–359.
[91]
Elssner, T.; Hennig, L.; Frauendorf, H.; Haferburg, D.; Kleber, H.P. Isolation, identification, and synthesis of γ-butyrobetainyl-CoA and crotonobetainyl-CoA, compounds involved in carnitine metabolism of E. coli. Biochemistry 2000, 39, 10761–10769.
[92]
Guebel, D.V.; Torres, N.V.; Cánovas, M. Modeling analysis of the l(?)-carnitine production process by Escherichia coli. Process Biochem 2006, 41, 281–288.
[93]
Cánovas, M.; Torroglosa, T.; Iborra, J.L. Permeabilization of Escherichia coli cells in the biotransformation of trimethylammonium compounds into l-carnitine. Enzyme Microb. Technol 2005, 37, 300–308.
[94]
Bernal, V.; Masdemont, B.; Arense, P.; Cánovas, M.; Iborra, J.L. Redirecting metabolic fluxes through cofactor engineering: Role of CoA-esters pool during l(?)-carnitine production by Escherichia coli. J. Biotechnol 2007, 132, 110–117.
[95]
Nissen, S.L.; Fuller, J.J.; Sell, J.; Ferket, P.R.; Rives, D.Y. The effect of β-hydroxy-β-methylbutyrate on growth, mortality and carcass qualities of broiler chickens. Poult. Sci 1994, 73, 137–155.
[96]
Nissen, S.L.; Faidley, T.D.; Zimmerman, D.R.; Izard, R.; Fisher, C.T. Colostral milk fat percentage and pig performance are enhanced by feeding the leucine metabolite β-hydroxy-β-methyl butyrate to sows. J. Anim. Sci 1994, 72, 2332–2337.
[97]
Wilson, G.J.; Wilson, J.M.; Manninen, A.H. Effects of β-hydroxy-β-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience. Nutr. Metab 2008, 5, 1–17.
[98]
Van Kovering, M.; Nissen, S.L. Oxidation of leucine and alphaketoisocaproate to β-hydroxy-β-methylbutyrate in vivo. Am. J. Physiol. Endocrinol. Metab 1992, 26, 27–31.
[99]
Lee, I.Y.; Nissen, S.L.; Rosazza, J.P.N. Conversion of β-methylbutyric acid to β-hydroxy-β-methylbutyric acid by Galactomyces reessii. Appl. Environ. Microbiol 1997, 63, 4191–4195.
[100]
Lee, I.Y.; Rosazza, J.P.N. Enzyme analyses demonstrate that β-methylbutyric acid is converted to β-hydroxy-β-methylbutyric acid via the leucine catabolic pathway by Galactomyces reessii. Arch. Microbiol 1998, 169, 257–262.
[101]
Dhar, A.; Dhar, K.; Rosazza, J.P.N. Purification and properties of an Galactomyces reessii hydratase that converts 3-methylcrotonic acid to 3-hydroxy-3-methylbutyric acid. J. Ind. Microbiol. Biotechnol 2002, 28, 81–87.
[102]
Ashengroph, M.; Nahvi, I.; Zarkesh-Esfahani, H.; Momenbeik, F. Candida galli strain PGO6: A novel isolated yeast strain capable of transformation of isoeugenol into vanillin and vanillic acid. Curr. Microbiol 2011, 62, 990–998.
[103]
Kim, M.C.; Kim, S.J.; Kim, D.S.; Jeon, Y.D.; Park, S.J.; Lee, H.S.; Um, J.Y.; Hong, S.H. Vanillic acid inhibits inflammatory mediators by suppressing NF-κB in lipopolysaccharide-stimulated mouse peritoneal macrophages. Immunopharmacol. Immunotoxicol 2011, 33, 525–532.
[104]
Priefert, H.; Rabenhorst, J.; Steinbüchel, A. Biotechnological production of vanillin. Appl. Microbiol. Biotechnol 2001, 56, 296–314.
[105]
Yoon, S.H.; Li, C.; Lee, Y.M.; Lee, S.H.; Kim, S.H.; Choi, M.S.; Seo, W.T.; Yang, J.-K.; Kim, J-Y.; Kim, S-W. Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnol. Bioprocess Eng. 2005, 10, 378–384.
[106]
Di Gioia, D.; Luziatelli, F.; Negroni, A.; Ficca, A.G.; Fava, F.; Ruzzi, M. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J. Biotechnol 2011, 156, 309–316.
[107]
Converti, A.; Aliakbarian, B.; Domínguez, J.M.; Bustos Vázquez, G.; Perego, P. Microbial production of biovanillin. Braz. J. Microbiol 2010, 41, 519–530.
[108]
Ashengroph, M.; Nahvi, I.; Zarkesh-Esfahani, H.; Momenbeik, F. Novel strain of Bacillus licheniformis SHL1 with potential converting ferulic acid into vanillic acid. Ann. Microbiol 2012, 62, 553–558.
[109]
Muheim, A.; Münch, T.; Wetli, M. Microbiological process for producing vanillin. U.S. Patent US6,235,507, 22 May 2001.
[110]
Rabenhorst, J.; Hoop, R. Process for the preparation of vanillin and microorganisms suitable therefor. U.S. Patent US6,133,003, 17 October 2000.
[111]
Hua, D.; Ma, C.; Song, L.; Lin, S.; Zhang, Z.; Deng, Z.; Xu, P. Enhanced vanillin production from ferulic acid using adsorbent resin. Appl. Microbiol. Biotechnol 2007, 74, 783–790.
[112]
Overhage, J.; Priefert, H.; Steinbüchel, A. Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199. Appl. Environ. Microbiol 1999, 65, 4837–4847.
[113]
Huang, Z.; Dostal, L.; Rosazza, J.P.N. Mechanism of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. J. Biol. Chem 1993, 268, 23954–23958.
[114]
Plaggenborg, R.; Overhage, J.; Loos, A.; Archer, J.A.C.; Lessard, P.; Sinskey, A.J.; Steinbüchel, A.; Priefert, H. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl. Microbiol. Biotechnol 2006, 72, 745–755.
[115]
Krings, U.; Pilawa, S.; Theobald, C.; Berger, R.G. Phenyl propenoic side chain degradation of ferulic acid by Pycnoporus cinnabarinus—elucidation of metabolic pathways using [5-2H]-ferulic acid. J. Biotechnol 2001, 85, 305–314.
[116]
Muheim, A.; Lerch, K. Towards a high-yield bioconversion of ferulic acid to vanillin. Appl. Microbiol. Biotechnol 1999, 51, 456–461.
[117]
Zheng, L.; Zheng, P.; Sun, Z.; Bai, Y.; Wang, J.; Guo, X. Production of vanillin from waste residua of rice brain oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresour. Technol. 2007, 98, 1115–1119.
[118]
Calisti, C.; Ficca, A.G.; Barghini, P.; Ruzzi, M. Regulation of ferulic catabolic genes in Pseudomonas fluorescens BF13: Involvement of a MarR family regulator. Appl. Microbiol. Biotechnol 2008, 80, 475–483.
[119]
Ghosh, S.; Sachan, A.; Sen, S.K.; Mitra, A. Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637. J. Ind. Microbiol. Biotechnol 2007, 34, 131–138.
[120]
Achterholt, S.; Priefert, H.; Steinbüchel, A. Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl. Microbiol. Biotechnol 2000, 54, 799–807.
[121]
Yoon, S.-H.; Li, C.; Kim, J.-E.; Lee, S.-H.; Yoon, J.-Y.; Choi, M.-S.; Seo, W.-T.; Yang, J.-K.; Kim, J.-Y.; Kim, S.-W. Production of vanillin by metabolically engineered Escherichia coli. Biotechnol. Lett 2005, 27, 1829–1832.
[122]
Barghini, P.; Di Gioia, D.; Fava, F.; Ruzzi, M. Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb. Cell Fact. 2007, 6, doi:10.1186/1475-2859-6-13.