全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification of Candidate Polymorphisms on Stress Oxidative and DNA Damage Repair Genes Related with Clinical Outcome in Breast Cancer Patients

DOI: 10.3390/ijms131216500

Keywords: genetic variants, GCLC, XDH, OGG1, breast cancer, survival

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diverse polymorphisms have been associated with the predisposition to develop cancer. On fewer occasions, they have been related to the evolution of the disease and to different responses to treatment. Previous studies of our group have associated polymorphisms on genes related to oxidative stress (rs3736729 on GCLC and rs207454 on XDH) and DNA damage repair (rs1052133 on OGG1) with a predisposition to develop breast cancer. In the present work, we have evaluated the hypothesis that these polymorphisms also play a role in a patient’s survival. A population-based cohort study of 470 women diagnosed with primary breast cancer and a median follow up of 52.44 months was conducted to examine the disease-free and overall survival in rs3736729, rs207454 and rs1052133 genetic variants. Adjusted Cox regression analysis was used to that end. The Kaplan-Meier analysis shows that rs3736729 on GCLC presents a significant association with disease-free survival and overall survival. The polymorphisms rs1052133 on OGG1 and rs207454 on XDH show a trend of association with overall survival. The analysis based on hormonal receptor status revealed a stronger association. The CC genotype on rs207454 ( XDH) was significantly associated with lower time of disease free survival ( p = 0.024) in progesterone receptor negative (PGR?) patients and rs3736729 ( GCLC) was significantly associated with disease free survival ( p = 0.001) and overall survival ( p = 0.012) in the subgroup of estrogen receptor negative (ER?) patients. This work suggests that unfavorable genetic variants in the rs207454 ( XDH) and rs3736729 ( GCLC) polymorphisms may act as predictors of the outcome in negative progesterone receptor and negative estrogen receptor breast cancer patients, respectively.

References

[1]  Arteaga, C.L.; Sliwkowski, M.X.; Osborne, C.K.; Perez, E.A.; Puglisi, F.; Gianni, L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat. Rev. Clin. Oncol 2012, 9, 16–32.
[2]  Dumitrescu, R.G.; Cotarla, I. Understanding breast cancer risk—Where do we stand in 2005? J. Cell. Mol. Med 2005, 9, 208–221.
[3]  Fasching, P.A.; Pharoah, P.D.; Cox, A.; Nevanlinna, H.; Bojesen, S.E.; Karn, T.; Broeks, A.; van Leeuwen, F.E.; van’t Veer, L.J.; Udo, R.; et al. The role of genetic breast cancer susceptibility variants as prognostic factors. Hum. Mol. Genet 2012, 21, 3926–3939.
[4]  Ferraldeschi, R.; Arnedos, M.; Hadfield, K.D.; A’Hern, R.; Drury, S.; Wardley, A.; Howell, A.; Evans, D.G.; Roberts, S.A.; Smith, I.; et al. Polymorphisms of CYP19A1 and response to aromatase inhibitors in metastatic breast cancer patients. Breast Cancer Res. Treat 2012, 133, 1191–1198.
[5]  Johnson, N.; Walker, K.; Gibson, L.J.; Orr, N.; Folkerd, E.; Haynes, B.; Palles, C.; Coupland, B.; Schoemaker, M.; Jones, M.; et al. CYP3A Variation, Premenopausal Estrone Levels, and Breast Cancer Risk. J. Natl. Cancer Inst 2012, 104, 657–669.
[6]  Ma, X.; Beeghly-Fadiel, A.; Lu, W.; Shi, J.; Xiang, Y.B.; Cai, Q.; Shen, H.; Shen, C.Y.; Ren, Z.; Keitaro, M.; et al. Pathway analyses identify TGFBR2 as potential breast cancer susceptibility gene: Results from a consortium study among Asians. Cancer Epidemiol. Biomarkers Prev 2012, 21, 1176–1184.
[7]  Pabalan, N.; Jarjanazi, H.; Sung, L.; Li, H.; Ozcelik, H. Menopausal status modifies breast cancer risk associated with the myeloperoxidase (MPO) G463A polymorphism in Caucasian women: A meta-analysis. PLoS One 2012, 7, e32389.
[8]  Rodrigues, P.; Furriol, J.; Tormo, E.; Ballester, S.; Lluch, A.; Eroles, P. The single-nucleotide polymorphisms +936 C/T VEGF and ?710 C/T VEGFR1 are associated with breast cancer protection in a Spanish population. Breast Cancer Res. Treat 2012, 133, 769–778.
[9]  Wang, J.; Wang, B.; Bi, J.; Li, K.; Di, J. MDR1 gene C3435T polymorphism and cancer risk: A meta-analysis of 34 case-control studies. J. Cancer Res. Clin. Oncol 2012, 138, 979–989.
[10]  Zhou, X.; Wu, C. Association of p73 G4C14-A4T14 polymorphisms with genetic susceptibilities to breast cancer: A case-control study. Med. Oncol 2012, 29, 3216–3221.
[11]  Goode, E.L.; Ulrich, C.M.; Potter, J.D. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol. Biomarkers Prev 2002, 11, 1513–1530.
[12]  Wu, H.; Kang, H.; Liu, Y.; Tong, W.; Liu, D.; Yang, X.; Lian, M.; Yao, W.; Zhao, H.; Huang, D.; et al. Roles of ABCB1 gene polymorphisms and haplotype in susceptibility to breast carcinoma risk and clinical outcomes. J. Cancer Res. Clin. Oncol 2012, 138, 1449–1462.
[13]  Yang, X.; Liu, D.; Wu, H.; Kang, H.; Pang, H.; Huang, D.; Sha, X.; Wang, E.; Wang, Z.; Wei, M. Association of XPC polymorphisms with susceptibility and clinical outcome to chemotherapy in breast cancer patients. Cancer Sci. 2012, doi:10.1111/j.1349-7006.2012.02312.x.
[14]  Ambrosone, C.B.; Tian, C.; Ahn, J.; Kropp, S.; Helmbold, I.; von Fournier, D.; Haase, W.; Sautter-Bihl, M.L.; Wenz, F.; Chang-Claude, J. Genetic predictors of acute toxicities related to radiation therapy following lumpectomy for breast cancer: A case-series study. Breast Cancer Res 2006, 8, R40.
[15]  Choi, J.Y.; Barlow, W.E.; Albain, K.S.; Hong, C.C.; Blanco, J.G.; Livingston, R.B.; Davis, W.; Rae, J.M.; Yeh, I.T.; Hutchins, L.F.; et al. Nitric oxide synthase variants and disease-free survival among treated and untreated breast cancer patients in a Southwest Oncology Group clinical trial. Clin. Cancer Res 2009, 15, 5258–5266.
[16]  Fagerholm, R.; Hofstetter, B.; Tommiska, J.; Aaltonen, K.; Vrtel, R.; Syrjakoski, K.; Kallioniemi, A.; Kilpivaara, O.; Mannermaa, A.; Kosma, V.M.; et al. NAD(P)H: quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat. Genet 2008, 40, 844–853.
[17]  Hubackova, M.; Vaclavikova, R.; Ehrlichova, M.; Mrhalova, M.; Kodet, R.; Kubackova, K.; Vrana, D.; Gut, I.; Soucek, P. Association of superoxide dismutases and NAD(P)H quinone oxidoreductases with prognosis of patients with breast carcinomas. Int. J. Cancer 2012, 130, 338–348.
[18]  Martin, R.C.; Ahn, J.; Nowell, S.A.; Hein, D.W.; Doll, M.A.; Martini, B.D.; Ambrosone, C.B. Association between manganese superoxide dismutase promoter gene polymorphism and breast cancer survival. Breast Cancer Res 2006, 8, R45.
[19]  Udler, M.; Maia, A.T.; Cebrian, A.; Brown, C.; Greenberg, D.; Shah, M.; Caldas, C.; Dunning, A.; Easton, D.; Ponder, B.; et al. Common germline genetic variation in antioxidant defense genes and survival after diagnosis of breast cancer. J. Clin. Oncol 2007, 25, 3015–3023.
[20]  Yao, S.; Barlow, W.E.; Albain, K.S.; Choi, J.Y.; Zhao, H.; Livingston, R.B.; Davis, W.; Rae, J.M.; Yeh, I.T.; Hutchins, L.F.; et al. Manganese superoxide dismutase polymorphism, treatment-related toxicity and disease-free survival in SWOG 8897 clinical trial for breast cancer. Breast Cancer Res. Treat 2010, 124, 433–439.
[21]  Acharya, A.; Das, I.; Chandhok, D.; Saha, T. Redox regulation in cancer: A double-edged sword with therapeutic potential. Oxid. Med. Cell. Longev 2010, 3, 23–34.
[22]  Mignotte, B.; Vayssiere, J.L. Mitochondria and apoptosis. Eur. J. Biochem 1998, 252, 1–15.
[23]  Modica-Napolitano, J.S.; Singh, K.K. Mitochondria as targets for detection and treatment of cancer. Expert Rev. Mol. Med 2002, 4, 1–19.
[24]  Costantini, P.; Jacotot, E.; Decaudin, D.; Kroemer, G. Mitochondrion as a novel target of anticancer chemotherapy. J. Natl. Cancer Inst 2000, 92, 1042–1053.
[25]  Hussain, S.P.; Hofseth, L.J.; Harris, C.C. Radical causes of cancer. Nat. Rev. Cancer 2003, 3, 276–285.
[26]  Hirano, T. Repair system of 7, 8-dihydro-8-oxoguanine as a defense line against carcinogenesis. J. Radiat. Res 2008, 49, 329–340.
[27]  Klungland, A.; Bjelland, S. Oxidative damage to purines in DNA: role of mammalian Ogg1. DNA Repair 2007, 6, 481–488.
[28]  Paz-Elizur, T.; Sevilya, Z.; Leitner-Dagan, Y.; Elinger, D.; Roisman, L.C.; Livneh, Z. DNA repair of oxidative DNA damage in human carcinogenesis: Potential application for cancer risk assessment and prevention. Cancer Lett 2008, 266, 60–72.
[29]  Yuan, W.; Xu, L.; Feng, Y.; Yang, Y.; Chen, W.; Wang, J.; Pang, D.; Li, D. The hOGG1 Ser326Cys polymorphism and breast cancer risk: A meta-analysis. Breast Cancer Res. Treat 2010, 122, 835–842.
[30]  Castro, G.D.; Delgado de Layno, A.M.; Costantini, M.H.; Castro, J.A. Cytosolic xanthine oxidoreductase mediated bioactivation of ethanol to acetaldehyde and free radicals in rat breast tissue. Its potential role in alcohol-promoted mammary cancer. Toxicology 2001, 160, 11–18.
[31]  Soini, Y.; Karihtala, P.; Mantyniemi, A.; Turunen, N.; Paakko, P.; Kinnula, V. Glutamate-L-cysteine ligase in breast carcinomas. Histopathology 2004, 44, 129–135.
[32]  Pritsos, C.A.; Gustafson, D.L. Xanthine dehydrogenase and its role in cancer chemotherapy. Oncol. Res 1994, 6, 477–481.
[33]  Comings, D.E.; MacMurray, J.P. Molecular heterosis: A review. Mol. Genet. Metab 2000, 71, 19–31.
[34]  Montano, M.M.; Deng, H.; Liu, M.; Sun, X.; Singal, R. Transcriptional regulation by the estrogen receptor of antioxidative stress enzymes and its functional implications. Oncogene 2004, 23, 2442–2453.
[35]  Urata, Y.; Ihara, Y.; Murata, H.; Goto, S.; Koji, T.; Yodoi, J.; Inoue, S.; Kondo, T. 17 Beta-estradiol protects against oxidative stress-induced cell death through the glutathione/glutaredoxin-dependent redox regulation of Akt in myocardiac H9c2 cells. J. Biol. Chem 2006, 281, 13092–13102.
[36]  Galaris, D.; Skiada, V.; Barbouti, A. Redox signaling and cancer: the role of “labile” iron. Cancer Lett 2008, 266, 21–29.
[37]  Halliwell, B. Oxidative stress and cancer: have we moved forward? Biochem. J 2007, 401, 1–11.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133