Power reduction in CMOS platforms is essential for any application technology. This is a direct result of both lateral scaling—smaller features at higher density, and vertical scaling—shallower junctions and thinner layers. For achieving this power reduction, solutions based on process-device and process-integration improvements, on careful layout modification as well as on circuit design are in use. However, the drawbacks of these solutions, in terms of greater manufacturing complexity (and higher cost) and speed degradation, call for “optimized” solutions. This paper reviews the issues associated with transistor scaling and related solutions for leakage and power reduction in terms of topological design rules and layout optimization for digital and analog transistors. For standard cells and SRAMs cells, leakage aware layout optimization techniques considering transistor configuration, stressors, line-edge-roughness and more are presented. Finally, different techniques for leakage and power reduction at the circuit level are discussed.
References
[1]
Skotnicki, T.; Fenouillet-Beranger, C.; Gallon, C.; Boeuf, F.; Monfray, S.; Payet, F.; Pouydebasque, A.; Szczap, M.; Farcy, A.; Arnaud, F.; et al. Innovative materials, devices, and CMOS technologies for low-power mobile multimedia. IEEE Trans. Electron Device 2008, 55, 96–130, doi:10.1109/TED.2007.911338.
[2]
Tavel, B.; Duriez, B.; Gwoziecki, R.; Basso, M.T.; Julien, C.; Ortolland, C.; Laplanche, Y.; Fox, R.; Sabouret, E.; Detcheverry, C.; et al. 65 nm LP/GP Mix Low Cost Platform for Multi-Media Wireless and Consumer Applications. In Proceedings of the 35th European Solid-State Device Research Conference (ESSDERC 2005), Grenoble, France, 12–16 September 2005; 50, pp. 573–578.
[3]
Miyashita, T.; Ikeda, K.; Kim, Y.S.; Yamamoto, T.; Sambonsugi, Y.; Ochimizu, H.; Sakoda, T.; Okuno, M.; Minakata, H.; Ohta, H.; et al. High-Performance and Low-Power Bulk Logic Platform Utilizing FET Specific Multiple-Stressors with Highly Enhanced Strain and Full-Porous Low-k Interconnects for 45-nm CMOS Technology. In Proceedings of the IEEE International Electron Devices Meeting, (IEDM 2007), Washington, DC, USA, 10–12 December 2007; pp. 251–254.
[4]
Watanabe, R.; Oishi, A.; Sanuki, T.; Kimijima, H.; Okamoto, K.; Fujita, S.; Fukui, H.; Yoshida, K.; Otani, H.; Morifuji, E.; et al. A Low Power 40 nm CMOS Technology Featuring Extremely High Density of Logic (2100 kGate/mm2) and SRAM (0.195 μm2) for Wide Range of Mobile Applications with Wireless System. In Proceedings of the IEEE International Electron Devices Meeting, (IEDM 2008), San Francisco, CA, USA, 15–17 December 2008; pp. 641–644.
[5]
Arnaud, F.; Liu, J.; Lee, Y.-M.; Lim, K.-Y.; Kohler, S.; Chen, J.; Moon, B.-K.; Lai, C.-W.; Lipinski, M.; Sang, L.; et al. 32 nm General Purpose Bulk CMOS Technology for High Performance Applications at Low Voltage. In Proceedings of the IEEE International Electron Devices Meeting, (IEDM 2008), San Francisco, CA, USA, 15–17 December 2008; pp. 633–636.
[6]
Shahidi, G.G. Design-Technology Interaction for Post-32 nm Node CMOS Technology. In Proceedings of the 2010 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 15–17 June 2010; pp. 143–144.
[7]
Helms, D.; Schmidt, E.; Nebel, W. Leakage in CMOS Circuits—An Introduction. In Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation,14th International Workshop (PATMOS 2004); Springer: Berlin, Germany, 2004; pp. 17–35.
[8]
Morifuji, E.; Yoshida, T.; Kanda, M.; Matsuda, S.; Yamada, S.; Matsuoka, F. Supply and Threshold-Voltage Trends for Scaled Logic and SRAM MOSFETs. IEEE Trans. Electron Device 2006, 53, 1427–1432, doi:10.1109/TED.2006.874752.
[9]
Roy, K.; Mukhopadhyay, S.; Mahmoodi-Meimand, H. Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits. Proc. IEEE 2003, 91, 305–327, doi:10.1109/JPROC.2002.808156.
Kawa, J. Low power and power management for CMOS—An EDA perspective. IEEE Trans. Electron Device 2008, 55, 186–196, doi:10.1109/TED.2007.911041.
[12]
Wong, B.P.; Mittal, A.; Cao, Y.; Starr, G. Nano-CMOS Circuit and Physical Design; John Wiley & Sons: Hoboken, NJ, USA, 2005.
[13]
Shauly, E.N.; Parag, A.; Krispil, U.; Rotstein, I. Device performances analysis of standard-cells transistors using silicon simulation and build-in device simulation. Proc. SPIE 2010, doi:10.1117/12.845622.
[14]
Shauly, E.; Parag, A.; Khmaisy, H.; Krispil, U.; Adan, O.; Levi, S.; Latinski, S.; Schwarzband, I.; Rotstein, I. Standard cell electrical and physical variability analysis based on automatic physical measurement for design-for-manufacturing purposes. Proc. SPIE 2011, doi:10.1117/12.881841.
[15]
Shauly, E.; Drori, R.; Cohen-Yasour, M.; Rotstein, I.; Peltinov, R.; Bartov, A.; Latinski, S.; Siany, A.; Geshesl, M. Accurate device simulations through CD-SEM-based edge-contour extraction. Proc. SPIE 2008, doi:10.1117/12.772648.
[16]
Wang, P.-H.; Lee, B.; Han, G.; Rouse, R.; Hurat, P.; Verghese, N. Addressing Parametric Impact of Systematic Pattern Variations in Digital IC Design. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC ’07), San Jose, CA, USA, 16–19 September 2007; pp. 587–590.
[17]
King, M.-C.; Chin, A. New test structure to monitor contact-to-poly leakage in sub-90 nm CMOS technologies. IEEE Trans. Semi. Manf. 2008, 21, 244–247, doi:10.1109/TSM.2008.2000267.
[18]
Vaserman, Y.; Shauly, E.N. Design ranking and analysis methodology for standard cells and full-chip physical optimization. Proc. SPIE 2009, doi:10.1117/12.812972.
[19]
Singhal, R.; Balijepalli, A.; Subramaniam, A.; Liu, F.; Nassif, S.; Cao, Y.; Singhal, R. Modeling and Analysis of Non-Rectangular Gate for Post-Lithography Circuit Simulation. In Proceedings of the 44th ACM/IEEE Design Automation Conference (DAC ’07), San Diego, CA, 4–8 June2007; pp. 823–828.
[20]
Kim, H.-W.; Lee, J.-Y.; Shin, J.; Woo, S.-G.; Cho, H.-K.; Moon, J.-T. Experimental investigation of the impact of LWR on sub-100-nm device performance. IEEE Trans. Electron Device 2004, 51, 1984–1988, doi:10.1109/TED.2004.839115.
[21]
Ban, Y.; Pan, D.Z. Modeling of Layout Aware Line-Edge Roughness and Poly Optimization for Leakage Minimization. accepted for publication. IEEE Trans. Emerg. Sel. Top. Circuits Syst. 2011, 1, 1–10, doi:10.1109/JETCAS.2011.2144490.
[22]
Ban, Y.; Sundareswaran, S.; Pan, D.Z. Total Sensitivity Based on DFM Optimization of Standard Libray Cells. In Proceedings of the ISPD ’10 Proceedings of the 19th International Symposium on Physical Design, New York, NY, USA, 14–17 March 2010; pp. 113–120.
[23]
Arnaud, F.; Boeuf, F.; Salvetti, F.; Lenoble, D.; Wacquant, F.; Regnier, C.; Morin, P.; Emonet, N.; Denis, E.; Oberlin, J.C.; et al. A Functional 0.69 μm2 Embedded 6T-SRAM bit cell for 65 nm CMOS platform. In Proceedings of the 2003 Symposium on VLSI Technology, Kyoto, Japan, 10–12 June 2003; pp. 65–66.
[24]
Utsumi, K.; Morifuji, E.; Kanda, M.; Aota, S.; Yoshida, T.; Honda, K.; Matsubara, Y.; Yamada, S.; Matsuoka, F. A 65 nm Low Power CMOS Platform with 0.495 μm2 SRAM for Digital Processing and Mobile Applications. In Proceedings of the 2005 Symposium on VLSI Technology, Washington DC, 14–16 June 2005; pp. 216–217.
Wu, S.-Y.; Liaw, J.J.; Lin, C.Y.; Chiang, M.C.; Yang, C.K.; Cheng, J.Y.; Tsai, M.H.; Liu, M.Y.; Wu, P.H.; Chang, C.H.; et al. A Highly Manufacturable 28 nm CMOS Low Power Platform Technology with Fully Functional 64 Mb SRAM Using Dual/Tripe Gate Oxide Process. In Proceedings of the 2009 Symposium on VLSI Technology, Honolulu, HI, USA, 16–18 June 2009; pp. 210–211.
[27]
Jeon, H.-J.; Kim, Y.-B.; Choi, M. Standby leakage power reduction technique for nanoscale CMOS VLSI systems. IEEE Trans. Instrum. Meas. 2010, 59, 1127–1133, doi:10.1109/TIM.2010.2044710.
[28]
Yasuda, Y.; Akiyama, Y.; Yamagata, Y.; Goto, Y.; Imai, K. Design methodology of body-biasing scheme for low power system LSI with multi-Vth transistors. IEEE Trans. Electron Device 2007, 54, 2946–2952, doi:10.1109/TED.2007.906964.
[29]
Wong, B.; Zach, F.; Moroz, V.; Mittal, A.; Starr, G.; Kahng, A. Nano-CMOS Design for Manufacturability; John Wiley & Sons: Hoboken, NJ, USA, 2009.
[30]
Tilke, A.; Stapelmann, C.; Eller, M.; Bach, K.-H.; Hampp, R.; Lindsay, R.; Conti, R.; Wille, W.; Jaiswal, R.; Galiano, M.; et al. Shallow trench isolation for the 45-nm CMOS node and geometry dependence of STI stress on CMOS device performance. IEEE Trans. Semi. Manf. 2007, 20, 59–67, doi:10.1109/TSM.2007.896632.
[31]
Eiho, T.; Sanuki, E.; Morifuji, T.; Iwamoto, G.; Sudo, K.; Fukasaku, K.; Ota, T.; Sawada, O.; Fuji, H.; Nii, M.; et al. Management of Power and Performance with Stress Memorization Technique for 45 nm CMOS. In Proceedings of the 2007 IEEE Symposium on VLSI Technology, Kyoto, Japan, 12–14 June 2007; pp. 218–219.
[32]
Lee, K.; Kang, C.; Yoo, O; Young, C.; Bersuker, G.; Park, H.; Lee, J.; Hwang, H.; Lee, B.; Lee, H.-D.; et al. A Comparative Study of Reliability and Performance of Strain Engineering using CESL Stressor and Mechanical Strain. In Proceedings of the IEEE International Reliability Physics Symposium (IRPS 2008), Phoenix, AZ, USA, 27 April–1 May 2008; pp. 306–309.
[33]
Ota, K.; Sanuki, T.; Yahashi, K.; Miyanami, Y.; Matsuo, K.; Idebuchi, J.; Moriya, M.; Nakayama, K.; Yamaguchi, R.; Tanaka, H. Scalable eSiGe S/D technology with less layout dependence for 45-nm generation. In Proceedings of the 2006 Symposium on VLSI Technology, Honolulu, HI, USA, 13–15 June 2006; pp. 64–65.
[34]
Luo, Y.; Nayak, D.K. Enhancement of CMOS performance by process-induced stress. IEEE Trans. Semi. Manf. 2005, 18, 63–68, doi:10.1109/TSM.2004.841831.
[35]
Ge, C.-H.; Lin, C.-C.; Ko, C.-H.; Huang, C.-C.; Huang, Y.-C.; Chan, B.-W.; Perng, B.-C.; Sheu, C.-C.; Tsai, P.-Y.; Yao, L.-G.; et al. Process-Strained Si (PSS) CMOS Technology Featuring 3D Strain Engineering. In Proceedings of the IEEE International Electron Devices Meeting (IEDM ’03), Washington, DC, USA, 8–10 December 2003; pp. 371–374.
[36]
Wang, T.-J.; Ko, C.-H.; Chang, C.-J.; Wu, S.-L.; Kuan, T.-M.; Lee, W.-C. The effects of mechanical uniaxial stress on junction leakage in nanoscale CMOSFETs. IEEE Trans. Electron Device 2008, 55, 572–577, doi:10.1109/TED.2007.912363.
[37]
Ban, Y.; Pan, D.Z. Compact Modeling and Robust Layout Optimization for Contacts in Deep Sub-wavelength Lithography. In Proceedings of the Design Automation Conference (DAC), Anaheim, CA, USA, 13–18 July 2010.
[38]
Chakraborty, A.; Shi, S.X.; Pan, D.Z. Layout Level Timing Optimization by Leveraging Active Area Dependent Mobility of Strained-Silicon Devices. In Proceedings of the Design, Automation & Test Europe (DATE), Munich, Germany, 10–14 March 2008.
[39]
Joshi, V.; Cline, B.; Sylvester, D.; Blaauw, D.; Agarwal, K. Mechanical stress aware optimization for leakage power reduction. IEEE Trans. Comput. Aided Des. 2010, 29, 722–736, doi:10.1109/TCAD.2010.2042893.
[40]
Venkatraman, R.; Castagnetti, R.; Kobozeva, O.; Duan, F.L.; Kamath, A.; Sabbagh, S.T.; Vilchis-Cruz, M.A.; Jhy Liaw, J.; You, J.-C.; Ramesh, S. The design, analysis, and development of highly manufacturable 6-T SRAM bitcells for SoC application. IEEE Trans. Electron Device 2005, 52, 218–226, doi:10.1109/TED.2004.841346.
[41]
Zhang, K.; Bhattacharya, U.; Chen, Z.; Hamzaoglu, F.; Murray, D.; Vallepalli, N.; Wang, Y.; Zheng, B.; Bohr, M. SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction. IEEE J. Solid State Circ. 2005, 40, 895–901, doi:10.1109/JSSC.2004.842846.
[42]
Smayling, M.; Axelrad, V. Simulation-Based Lithography Optimization for Logic Circuits at 22 nm and Below. In Proceedings of the International Conference on Simulation of SemiconductorProcesses and DevicesSISPAD ’09, San Diego, CA, USA, 9–11 September 2009; pp. 1–4.
[43]
Amelifrad, B.; Fallah, F.; Pedram, M. Leakage minimization of SRAM cells in a dual-Vt and dual-Tox technology. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2008, 16, 851–860, doi:10.1109/TVLSI.2008.2000459.
[44]
Sill, F.; You, J.; Timmermann, D. Design of Mixed Gates for Leakage Reduction. In Proceedings of the 17th ACM Great Lakes Symposium on VLSI, New York, NY, USA, 11–13 March 2007.
[45]
Yang, H.S.; Wong, R.; Hasumi, R.; Gao, Y.; Kim, N.S.; Lee, D.H.; Badrudduza, S.; Nair, D.; Ostermayr, M.; Kang, H.; et al. Scaling of 32 nm Low Power SRAM with High-k Metal Gate. In Proceedings of the IEEE International Electron Devices Meeting (IEDM 2008), San Francisco, CA, USA, 15–17 December 2008; pp. 233–236.
[46]
Narendra, S.G. Challenges, Design Choices in nanoscale CMOS. ACM J. Emerg. Technol. Comput. Syst. 2005, 1, 7–49, doi:10.1145/1063803.1063805.
[47]
Valentian, A.; Beigne, E. Automatic gate biasing of an SCCMOS power switch achieving maximum leakage reduction and lowering leakage current variability. IEEE J. Solid State Circ. 2008, 43, 1688–1698, doi:10.1109/JSSC.2008.922710.
[48]
Paul, A.C.; Agarwal, A.; Roy, K. Low-power design techniques for scaled technologies. Integration 2006, 39, 64–89.
[49]
Rahman, H.; Chakrabarti, C. A leakage estimation and reduction technique for scaled CMOS logic circuits considering gate-leakage. In Proceedings of the International Symposium on Circuits and Systems, Vancouver, Canada, 23–26 May 2004; pp. 297–300.
[50]
Lee, D.; Zhai, B.; Blaauw, D.; Sylvester, D. Ultra Low-Power Electronics and Design; Macii, E., Ed.; Kluwer Academic Publishers: New York, NY, USA, 2004.
[51]
Chang, M.-C.; Chang, C.-S.; Chao, C.-P.; Goto, K.-I.; Ieong, M.; Lu, L.-C.; Diaz, C.H. Transistor- and circuit-design optimization for low-power CMOS. IEEE Trans. Electron Device 2008, 55, 84–95, doi:10.1109/TED.2007.911348.
[52]
Razavipiur, G.; Afazali-Kusha, A.; Pedram, M. Design and analysis of two low-power SRAM cell structures. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2009, 17, 1551–1555, doi:10.1109/TVLSI.2008.2004590.
[53]
Elakkumanan, P.; Narasimhan, A.; Sridhar, R. NC-SRAM—A low-leakage memory circuit for ultra deep submicron designs. In Proceedings of the IEEE International SOC (Systems-on-Chip) Conference, Rochester, NY, USA, 17–20 September2003; pp. 3–6.
[54]
Chuang, C.-T.; Mukhopadhyay, S.; Kim, J.-J.; Kim, K.; Rao, R. High-performance SRAM in nanoscale CMOS: Design challenges and techniques. In Proceedings of the IEEE International Workshop on Memory TechnologyDesign and Testing, Taipei, Taiwan, 3–5 December 2007; pp. 4–12.