Osteoarticular pathologies very often require an implementation therapy to favor regeneration processes of bone, cartilage and/or tendons. Clinical approaches performed on osteoarticular complications in dogs constitute an ideal model for human clinical translational applications. The adipose-derived mesenchymal stem cells (ASCs) have already been used to accelerate and facilitate the regenerative process. ASCs can be maintained in vitro and they can be differentiated to osteocytes or chondrocytes offering a good tool for cell replacement therapies in human and veterinary medicine. Although ACSs can be easily obtained from adipose tissue, the amplification process is usually performed by a time consuming process of successive passages. In this work, we use canine ASCs obtained by using a Bioreactor device under GMP cell culture conditions that produces a minimum of 30 million cells within 2 weeks. This method provides a rapid and aseptic method for production of sufficient stem cells with potential further use in clinical applications. We show that plasma rich in growth factors (PRGF) treatment positively contributes to viability and proliferation of canine ASCs into caprolactone 2-(methacryloyloxy) ethyl ester (CLMA) scaffolds. This biomaterial does not need additional modifications for cASCs attachment and proliferation. Here we propose a framework based on a combination of approaches that may contribute to increase the therapeutical capability of stem cells by the use of PRGF and compatible biomaterials for bone and connective tissue regeneration.
References
[1]
Cui, L.; Liu, B.; Liu, G.; Zhang, W.; Cen, L.; Sun, J.; Yin, S.; Liu, W.; Cao, Y. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 2007, 28, 5477–5486.
[2]
De Bari, C.; Dell’accio, F. Mesenchymal stem cells in rheumatology: A regenerative approach to joint repair. Clin. Sci. (Lond) 2007, 113, 339–348, doi:10.1042/CS20070126.
Davatchi, F.; Abdollahi, B.S.; Mohyeddin, M.; Shahram, F.; Nikbin, B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int. J. Rheum. Dis. 2011, 14, 211–215.
[5]
Maumus, M.; Guerit, D.; Toupet, K.; Jorgensen, C.; Noel, D. Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology. Stem. Cell Res. Ther. 2011, 2, 14, doi:10.1186/scrt55.
[6]
Vieira, N.M.; Brandalise, V.; Zucconi, E.; Jazedje, T.; Secco, M.; Nunes, V.A.; Strauss, B.E.; Vainzof, M.; Zatz, M. Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol. Cell 2008, 100, 231–241, doi:10.1042/BC20070102.
[7]
Vieira, N.M.; Bueno, C.R., Jr.; Brandalise, V.; Moraes, L.V.; Zucconi, E.; Secco, M.; Suzuki, M.F.; Camargo, M.M.; Bartolini, P.; Brum, P.C.; et al. SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem. Cells 2008, 26, 2391–2398.
[8]
Bunnell, B.A.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods 2008, 45, 115–120, doi:10.1016/j.ymeth.2008.03.006.
[9]
Colter, D.C.; Class, R.; DiGirolamo, C.M.; Prockop, D.J. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl. Acad. Sci. USA 2000, 97, 3213–3218.
[10]
Chieregato, K.; Castegnaro, S.; Madeo, D.; Astori, G.; Pegoraro, M.; Rodeghiero, F. Epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor-bb can substitute for fetal bovine serum and compete with human platelet-rich plasma in the ex vivo expansion of mesenchymal stromal cells derived from adipose tissue. Cytotherapy 2011, 13, 933–943, doi:10.3109/14653249.2011.583232.
[11]
Anitua, E.; Andia, I.; Ardanza, B.; Nurden, P.; Nurden, A.T. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb. Haemost. 2004, 91, 4–15.
[12]
Kasten, P.; Vogel, J.; Beyen, I.; Weiss, S.; Niemeyer, P.; Leo, A.; Luginbuhl, R. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: The specific surface area makes a difference. J. Biomater. Appl. 2008, 23, 169–188, doi:10.1177/0885328207088269.
[13]
Van den Dolder, J.; Mooren, R.; Vloon, A.P.; Stoelinga, P.J.; Jansen, J.A. Platelet-rich plasma: Quantification of growth factor levels and the effect on growth and differentiation of rat bone marrow cells. Tissue Eng. 2006, 12, 3067–3073, doi:10.1089/ten.2006.12.3067.
[14]
Pieri, F.; Lucarelli, E.; Corinaldesi, G.; Fini, M.; Aldini, N.N.; Giardino, R.; Donati, D.; Marchetti, C. Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: A comparative histomorphometric study in minipigs. J. Oral Maxillofac. Surg. 2009, 67, 265–272.
[15]
Straley, K.S.; Foo, C.W.; Heilshorn, S.C. Biomaterial design strategies for the treatment of spinal cord injuries. J. Neurotrauma 2010, 27, 1–19, doi:10.1089/neu.2009.0948.
[16]
Madigan, N.N.; McMahon, S.; O'Brien, T.; Yaszemski, M.J.; Windebank, A.J. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respir. Physiol. Neurobiol. 2009, 169, 183–199, doi:10.1016/j.resp.2009.08.015.
[17]
Ivirico, J.L.; Martinez, E.C.; Sanchez, M.S.; Criado, I.M.; Ribelles, J.L.; Pradas, M.M. Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83, 266–275.
[18]
Vertenten, G.; Lippens, E.; Girones, J.; Gorski, T.; Declercq, H.; Saunders, J.; van den Broeck, W.; Chiers, K.; Duchateau, L.; Schacht, E.; et al. Evaluation of an injectable, photopolymerizable, and three-dimensional scaffold based on methacrylate-endcapped poly(D,L-lactide-co-epsilon-caprolactone) combined with autologous mesenchymal stem cells in a goat tibial unicortical defect model. Tissue Eng. Part A 2009, 15, 1501–1511.
[19]
Hwang, Y.J.; Choi, J.Y. Addition of mesenchymal stem cells to the scaffold of platelet-rich plasma is beneficial for the reduction of the consolidation period in mandibular distraction osteogenesis. J. Oral Maxillofac. Surg. 2010, 68, 1112–1124, doi:10.1016/j.joms.2008.08.038.
[20]
Kasten, P.; Vogel, J.; Geiger, F.; Niemeyer, P.; Luginbuhl, R.; Szalay, K. The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials 2008, 29, 3983–3992, doi:10.1016/j.biomaterials.2008.06.014.
[21]
Cho, H.S.; Song, I.H.; Park, S.Y.; Sung, M.C.; Ahn, M.W.; Song, K.E. Individual variation in growth factor concentrations in platelet-rich plasma and its influence on human mesenchymal stem cells. Korean J. Lab Med. 2011, 31, 212–218, doi:10.3343/kjlm.2011.31.3.212.
[22]
Ito, K.; Yamada, Y.; Naiki, T.; Ueda, M. Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma. Clin. Oral Implants Res. 2006, 17, 579–586, doi:10.1111/j.1600-0501.2006.01246.x.
[23]
Bensaid, W.; Triffitt, J.T.; Blanchat, C.; Oudina, K.; Sedel, L.; Petite, H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 2003, 24, 2497–2502, doi:10.1016/S0142-9612(02)00618-X.
[24]
Ahmed, T.A.; Dare, E.V.; Hincke, M. Fibrin: A versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev. 2008, 14, 199–215, doi:10.1089/ten.teb.2007.0435.
[25]
Zhu, H.; Schulz, J.; Schliephake, H. Human bone marrow stroma stem cell distribution in calcium carbonate scaffolds using two different seeding methods. Cli. Oral Implants Res. 2010, 21, 182–188, doi:10.1111/j.1600-0501.2009.01816.x.
[26]
Lohse, N.; Schulz, J.; Schliephake, H. Effect of fibrin on osteogenic differentiation and VEGF expression of bone marrow stromal cells in mineralised scaffolds: A three-dimensional analysis. Eur. Cell Mater. 2012, 23, 413–424.
Yamada, Y.; Ueda, M.; Hibi, H.; Nagasaka, T. Translational research for injectable tissue-engineered bone regeneration using mesenchymal stem cells and platelet-rich plasma: from basic research to clinical case study. Cell Transplant 2004, 13, 343–355, doi:10.3727/000000004783983909.
[29]
Pieri, F.; Lucarelli, E.; Corinaldesi, G.; Iezzi, G.; Piattelli, A.; Giardino, R.; Bassi, M.; Donati, D.; Marchetti, C. Mesenchymal stem cells and platelet-rich plasma enhance bone formation in sinus grafting: a histomorphometric study in minipigs. J. Clin. Periodontol. 2008, 35, 539–546, doi:10.1111/j.1600-051X.2008.01220.x.
[30]
Suchanek, W.; Yashima, M.; Kakihana, M.; Yoshimura, M. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers. Biomaterials 1996, 17, 1715–1723, doi:10.1016/0142-9612(96)87652-6.
[31]
Bruder, S.P.; Kraus, K.H.; Goldberg, V.M.; Kadiyala, S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J. Bone Joint Surg. Am. 1998, 80, 985–996.
[32]
Ramay, H.R.; Zhang, M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 2004, 25, 5171–5180, doi:10.1016/j.biomaterials.2003.12.023.
[33]
Anitua, E.; Carda, C.; Andia, I. A novel drilling procedure and subsequent bone autograft preparation: A technical note. Int. J. Oral Maxillofac. Implants 2007, 22, 138–145.
[34]
Ivirico, J.L.; Salmeron-Sanchez, M.; Ribelles, J.L.; Pradas, M.M.; Soria, J.M.; Gomes, M.E.; Reis, R.L.; Mano, J.F. Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 91, 277–286.