Osmotic loading of articular cartilage has been used to study cell-tissue interactions and mechanisms in chondrocyte volume regulation in situ. Since cell volume changes are likely to affect cell’s mechanotransduction, it is important to understand how environmental factors, such as composition of the immersion medium and temperature affect cell volume changes in situ in osmotically challenged articular cartilage. In this study, chondrocytes were imaged in situ with a confocal laser scanning microscope (CLSM) through cartilage surface before and 3 min and 120 min after a hypo-osmotic challenge. Samples were measured either in phosphate buffered saline (PBS, without glucose and Ca 2+) or in Dulbecco’s modified Eagle’s medium (DMEM, with glucose and Ca 2+), and at 21 °C or at 37 °C. In all groups, cell volumes increased shortly after the hypotonic challenge and then recovered back to the original volumes. At both observation time points, cell volume changes as a result of the osmotic challenge were similar in PBS and DMEM in both temperatures. Our results indicate that the initial chondrocyte swelling and volume recovery as a result of the hypo-osmotic challenge of cartilage are not dependent on commonly used immersion media or temperature.
References
[1]
Bush, P.G.; Hall, A.C. Passive osmotic properties of in situ human articular chondrocytes within non-degenerate and degenerate cartilage. J. Cell Physiol. 2005, 204, 309–319, doi:10.1002/jcp.20294.
[2]
Grushko, G.; Schneiderman, R.; Maroudas, A. Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: A comparison between the processes of ageing and degeneration in human hip cartilage. Connect. Tissue Res. 1989, 19, 149–176, doi:10.3109/03008208909043895.
[3]
Watson, P.J.; Carpenter, T.A.; Hall, L.D.; Tyler, J.A. Cartilage swelling and loss in a spontaneous model of osteoarthritis visualized by magnetic resonance imaging. Osteoarthritis Cartilage 1996, 4, 197–207, doi:10.1016/S1063-4584(96)80016-1.
[4]
Bush, P.G.; Hall, A.C. The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage. Osteoarthritis Cartilage 2003, 11, 242–251, doi:10.1016/S1063-4584(02)00369-2.
[5]
Bush, P.G.; Hall, A.C. The osmotic sensitivity of isolated and in situ bovine articular chondrocytes. J. Orthop. Res. 2001, 19, 768–778, doi:10.1016/S0736-0266(01)00013-4.
[6]
Bush, P.G.; Hall, A.C. Regulatory volume decrease (RVD) by isolated and in situ bovine articular chondrocytes. J. Cell Physiol. 2001, 187, 304–314, doi:10.1002/jcp.1077.
[7]
Urban, J.P.G.; Hall, A.C.; Gehl, K.A. Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J. Cell. Physiol. 1993, 154, 262–270, doi:10.1002/jcp.1041540208.
[8]
Korhonen, R.K.; Han, S.-K.; Herzog, W. Osmotic loading of in situ chondrocytes in their native environment. Mol. Cell. Biomech. 2010, 7, 125–134.
[9]
Bush, P.G.; Hodkinson, P.D.; Hamilton, G.L.; Hall, A.C. Viability and volume of in situ bovine articular chondrocytes—Changes following a single impact and effects of medium osmolarity. Osteoarthritis Cartilage 2005, 13, 54–65, doi:10.1016/j.joca.2004.10.007.
[10]
Korhonen, R.K.; Han, S.-K.; Herzog, W. Osmotic loading of articular cartilage modulates cell deformations along primary collagen fibril directions. J. Biomech. 2010, 43, 783–787, doi:10.1016/j.jbiomech.2009.10.022.
[11]
Guilak, F.; Erickson, G.R.; Ting-Beall, H.P. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys. J. 2002, 82, 720–727, doi:10.1016/S0006-3495(02)75434-9.
[12]
Turunen, S.M.; Lammi, M.J.; Saarakkala, S.; Koistinen, A.; Korhonen, R.K. Hypotonic challenge modulates cell volumes differently in the superficial zone of intact articular cartilage and cartilage explants. Biomech. Model. Mechanobiol. 2012, 11, 665–675, doi:10.1007/s10237-011-0341-z.
[13]
Kerrigan, M.J.P.; Hook, C.S.V.; Qusous, A.; Hall, A.C. Regulatory volume increase (RVI) by in situ and isolated bovine articular chondrocytes. J. Cell Physiol. 2006, 209, 481–492, doi:10.1002/jcp.20758.
[14]
Glacken, M.W.R.; Fleischaker, J.; Sinskey, A.J. Reduction of waste product excretion via nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol. Bioeng. 1986, 28, 1376–1389, doi:10.1002/bit.260280912.
[15]
Lodish, H.; Baltimore, D.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Darnell, J. Molecular Cell Biology; Scientific American Books: New York, NY, USA, 1995.
[16]
Rajpurohit, R.; Koch, C.J.; Tao, Z.; Teixeira, C.M.; Shapiro, I.M. Adaptation of chondrocytes to low oxygen tension: Relationship between hypoxia and cellular metabolism. J. Cell Physiol. 1996, 168, 424–432, doi:10.1002/(SICI)1097-4652(199608)168:2<424::AID-JCP21>3.0.CO;2-1.
[17]
Lang, F. Mechanisms and significance of cell volume regulation. J. Am. Coll. Nutr. 2007, 26, S613–S623.
Hall, A.C. Volume-sensitive taurine transport in bovine articular chondrocytes. J. Physiol. 1995, 484, 755–766.
[20]
Tan, S.C.W.; Pan, W.X.; Ma, G.; Cai, N.; Leong, K.W.; Liao, K. Viscoelastic behaviour of human mesenchymal stem cells. BMC Cell Biol. 2008, 9, 40, doi:10.1186/1471-2121-9-40.
[21]
Hall, A.C.; Bush, P.G. The role of a swelling-activated taurine transport pathway in the regulation of articular chondrocyte volume. Eur. J. Physiol. 2001, 442, 771–781, doi:10.1007/s004240100601.
[22]
Han, S.-K.; Seerattan, R.; Herzog, W. Mechanical loading of in situ chondrocytes in lapine retropatellar cartilage after anterior cruciate ligament transaction. J. R. Soc. Interface 2010, 7, 895–903, doi:10.1098/rsif.2009.0458.
[23]
Király, K.; Lapvetel?inen, T.; Arokoski, J.; T?rr?nen, K.; Módis, L.; Kiviranta, I; Helminen, H.J. Application of selected cationic dyes for the semiquantitative estimation of glycosaminoglycans in histological sections of articular cartilage by microspectrophotometry. Histochem. J. 1996, 28, 577–590, doi:10.1007/BF02331378.
[24]
Kiviranta, I.; Jurvelin, J.; Tammi, M.; S??m?nen, A.M.; Helminen, H.J. Microspectrophotometric quantitation of glycosaminoglycans in articular cartilage sections stained with Safranin O. Histochemistry 1985, 82, 249–255, doi:10.1007/BF00501401.
[25]
Kokkonen, H.T.; M?kel?, J.; Kulmala, K.A.M.; Rieppo, L.; Jurvelin, J.S.; Tiitu, V.; Karjalainen, H.M.; Korhonen, R.K.; Kovanen, V.; T?yr?s, J. Computed tomography detects changes in contrast agent diffusion after collagen cross-linking typical to natural aging of articular cartilage. Osteoarthritis Cartilage 2011, 19, 1190–1198.
[26]
Oh, T.; Sung, J.H.; Tatosian, D.A.; Shuler, M.L.; Kim, D. Real-time fluorescence detection of multiple microscale cell culture analog devices in situ. Cytometry Part A 2007, 71A, 857–865, doi:10.1002/cyto.a.20427.
[27]
Alyassin, A.M.; Lancaster, J.L.; Downs, J.H.; Fox, P.T. Evaluation of new algorithms for the interactive measurement of surface area and volume. Med. Eng. Phys. 1994, 21, 741–752.
[28]
Brown, H.; Prescott, R. Applied Mixed Models in Medicine, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2006.
[29]
Korhonen, R.K.; Julkunen, P.; Jurvelin, J.S.; Saarakkala, S. Structural and compositonal changes in peri- and extracellular matrix of osteoarthritic cartilage modulate chondrocyte morphology. Cell. Mol. Bioeng. 2011, 4, 484–494, doi:10.1007/s12195-011-0178-7.
[30]
Saarakkala, S.; Julkunen, P.; Kiviranta, P.; M?kitalo, J.; Jurvelin, J.S.; Korhonen, R.K. Depth-wise progression of osteoarthritis in human articular cartilage: Investigation of composition, structure and biomechanics. Osteoarthritis Cartilage 2010, 18, 73–81.
[31]
Hall, A.C. Volume regulation by single isolated bovine articular chondrocytes studied by fluorescence imaging. J. Physiol. 1999, 517P, 55–56.
[32]
Uesono, Y. Environmental stresses and clinical drugs paralyze a cell. Commun. Integr. Biol. 2009, 2, 275–278, doi:10.4161/cib.2.3.8226.
[33]
Uesono, Y.; Ashe, M.P.; Toh-e, A. Simultaneous yet independent regulation of actin cytoskeletal organization and translation initiation by glucose in Saccharomyces cerevisiae. Mol. Biol. Cell 2004, 15, 1544–1556, doi:10.1091/mbc.E03-12-0877.
[34]
Obradovic, B.; Carrier, R.L.; Vunjak-Novakovic, G.; Freed, L.E. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 1999, 63, 197–205, doi:10.1002/(SICI)1097-0290(19990420)63:2<197::AID-BIT8>3.0.CO;2-2.
[35]
Hoffmann, E.K.; Dunham, P.B. Membrane mechanisms and intracellular signaling in cell volume regulation. Int. Rev. Cytol. 1995, 161, 173–260, doi:10.1016/S0074-7696(08)62498-5.
[36]
Mow, V.C.; Proctor, C.S.; Kelly, M.A. Biomechanics of articular cartilage. In Basic Biomechanics of the Locomotor System; Nordin, M., Frankel, V.H., Eds.; Lea and Febiger: Philadelphia, PA, USA, 1989; pp. 31–58.
[37]
Poole, A.R.; Pidoux, I.; Reiner, A.; Rosenberg, L. An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage. J. Cell Biol. 1982, 93, 921–937, doi:10.1083/jcb.93.3.921.
[38]
Poole, A.R.; Pidoux, I.; Reiner, A.; Tang, L.H.; Choi, H.; Rosenberg, L. Localization of proteoglycan monomer and link protein in the matrix of bovine articular cartilage: An immunohistochemical study. J. Histochem. Cytochem. 1980, 28, 621–635, doi:10.1177/28.7.6156200.