全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ciprofloxacin-Collagen Conjugate in the Wound Healing?Treatment

DOI: 10.3390/jfb3020361

Keywords: protein, ciprofloxacin, quinolones, biomedical application, antibiotic, antimicrobial, infection, wound healing, fibroblast proliferation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The synthesis of a novel functional biomaterial for wound healing treatment was carried out by adopting a free-radical grafting procedure in aqueous media. With this aim, ciprofloxacin (CFX) was covalently incorporated into collagen (T1C) chains employing an ascorbic acid/hydrogen peroxide redox pair as biocompatible initiator system. The covalent insertion of CFX in the polymeric chains was confirmed by FT-IR and UV analyses, while an antibacterial assay demonstrated the activity of the synthesized conjugate against Staphylococcus aureus and Escherichia coli, microorganisms that commonly infect wounds. A catechin blended conjugate was also tested in order to evaluate the ability to influence fibroblast cell growth. The observed antibacterial activity and stimulation of fibroblast growth support the applicability of CFX-T1C conjugate in wound treatment encouraging the healing process.

References

[1]  Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958, doi:10.1146/annurev.biochem.77.032207.120833.
[2]  Bailey, A.J.; Paul, R.G. Collagen is not so simple protein. J. Soc. Leathre Technol. Chem. 1998, 82, 104–118.
[3]  Lee, C.H.; Singla, A.; Lee, Y. Biomedical applications of collagen. Int. J. Pharmaceut. 2001, 221, 1–22, doi:10.1016/S0378-5173(01)00691-3.
[4]  Antonio, F.; Guillem, R.; Sonia, T.; Clara, M.; Piergiorgio, G.; Valeria, C.; Gianluca, C.; Tzanov, T. Cross-linked collagen sponges loaded with plant polyphenols with inhibitory activity towards chronic wound enzymes. Biotechnol. J. 2011, 6, 1208–1218.
[5]  Ueng, S.W.N.; Yuan, L.J.; Lin, S.S.; Liu, S.J.; Chan, E.C.; Chen, K.T.; Lee, M.S. In vitro and in vivo analysis of a biodegradable poly(lactide-co-glycolide) copolymer capsule and collagen composite system for antibiotics and bone cells delivery. J. Trauma 2011, 70, 1503–1509, doi:10.1097/TA.0b013e3181edb873.
[6]  Beberok, A.; Buszman, E.; Wrzesniok, D.; Otreba, M.; Trzcionka, J. Interaction between ciprofloxacin and melanin: The effect on proliferation and melanization in melanocytes. Eur. J. Pharmacol. 2011, 669, 32–37, doi:10.1016/j.ejphar.2011.08.003.
[7]  Dizman, B.; Elasri, M.O.; Mathias, L.J. Synthesis and antibacterial activities of water-soluble methacrylate polymers containing quaternary ammonium compounds. J. Polym. Sci. Pol. Chem. 2006, 44, 5965–5973, doi:10.1002/pola.21678.
[8]  Adetutua, A.; Morgana, W.A.; Corcorana, O. Ethnopharmacological survey and in vitro evaluation of wound-healing plants used in south-western Nigeria. J. Ethnopharmacol. 2011, 137, 50–56, doi:10.1016/j.jep.2011.03.073.
[9]  Curcio, M.; Puoci, F.; Iemma, F.; Parisi, O.I.; Cirillo, G.; Spizzirri, U.G.; Picci, N. Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. J. Agric. Food Chem. 2009, 57, 5933–5938.
[10]  Curcio, M.; Cirillo, G.; Parisi, O.I.; Iemma, F.; Spizzirri, U.G.; Altimari, I.; Picci, N.; Puoci, F. Poly(2-hydroxyethyl methacrylate)-quercetin conjugate as biomaterial in ophthalmology: An “ab initio” study. J. Funct. Biomater. 2011, 2, 1–17, doi:10.3390/jfb2010001.
[11]  Spizzirri, U.G.; Iemma, F.; Puoci, F.; Cirillo, G.; Curcio, M.; Parisi, O.I.; Picci, N. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules 2009, 10, 1923–1930, doi:10.1021/bm900325t.
[12]  Spizzirri, U.G.; Parisi, O.I.; Iemma, F.; Cirillo, G.; Puoci, F.; Curcio, M.; Picci, N. Antioxidant-polysaccharide conjugates for food application by eco-friendly grafting procedure. Carbohyd. Polym. 2010, 79, 333–340, doi:10.1016/j.carbpol.2009.08.010.
[13]  Mertz, P.M.; Ovington, L.G. Wound-healing microbiology. Dermatol. Clinics 1993, 11, 739–747.
[14]  Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound microbiology and associated approaches to wound management. Clinical Microbiol. Rev. 2001, 14, 2244–2269.
[15]  Albu, M.G.; Ferdes, M.; Kaya, D.A.; Ghica, M.V.; Titorencu, I.; Popa, L.; Albu, L. Collagen wound dressings with anti-inflammatory activity. Mol. Cryst. Liq. Cryst. 2012, 555, 271–279.
[16]  Woodley, D.T.; O’Keefe, E.J.; Prunerias, M. Cutaneous wound healing: A model for cell-matrix interaction. J. Am. Acad. Dermatol. 1985, 12, 420–433, doi:10.1016/S0190-9622(85)80005-0.
[17]  Mimura, Y.; Ihn, H.; Jinnin, M.; Asano, Y.; Yamane, K.; Tamaki, K. Epidermal growth factor induces fibronectin expression in human dermal fibroblasts via protein kinase C δ-signaling pathway. J. Invest. Dermatol. 2004, 122, 1390–1398, doi:10.1111/j.0022-202X.2004.22618.x.
[18]  Graham, M.F.; Diegelman, R.F.; Cohen, I.K. An in vitro model of fibroplasia: Simultaneous quantification of fibroblast proliferation, migration, and collagen synthesis. P. Soc. Exp. Biol. Med. 1984, 176, 302–308.
[19]  Mensah, A.Y.; Sampson, J.; Houghton, P.J.; Hylands, P.J.; Westbrook, J.; Dunn, M.M.; Hughes, A.; Cherry, G.W. Effects of Buddlejaglobosa leaf and its constituents relevant to wound healing. J. Ethnopharmacol. 2001, 77, 219–226, doi:10.1016/S0378-8741(01)00297-5.
[20]  Muzzarelli, R.A.A.; Guerrieri, M.; Goteri, G.; Muzzarelli, C.; Armeni, T.; Ghiselli, R.; Cornelissen, M. The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials 2005, 26, 5844–5854.
[21]  Paasche, G.; Ceschi, P.; L?bler, M.; R?sl, C.; Gomes, P.; Hahn, A.; Rohm, H.W.; Sternberg, K.; Lenarz, T.; Schmitz, K.-P.; Barcikowski, S.; St?ver, T. Effects of metal ions on fibroblasts and spiral ganglion cells. J. Neurosci. Res. 2011, 89, 611–617, doi:10.1002/jnr.22569.
[22]  Idris, S.B.; D?nmark, S.; Finne-Wistrand, A.; Arvidson, K.; Albertsson, A.-C.; Bolstad, A.I.; Mustafa, K. Biocompatibility of polyester scaffolds with fibroblasts and osteoblast-like cells for bone tissue engineering. J. Bioact. Compat. Pol. 2010, 25, 567–583, doi:10.1177/0883911510381368.
[23]  Ranzato, E.; Martinotti, S.; Burlando, B. Wound healing properties of jojoba liquid wax: An in vitro study. J. Ethnopharmacol. 2011, 134, 443–449, doi:10.1016/j.jep.2010.12.042.
[24]  Hincal, F.; Gürbay, A.; Favier, A. Biphasic response of ciprofloxacin in human fibroblast cell cultures. Nonlinearity Biol. Toxicol. Med. 2003, 1, 481–492, doi:10.1080/15401420390271083.
[25]  Seto, Y.; Inoue, R.; Ochi, M.; Gandy, G.; Yamada, S.; Onoue, S. Combined use of in vitro phototoxic assessments and cassette dosing pharmacokinetic study for phototoxicity characterization of fluoroquinolones. AAPS J. 2011, 13, 482–492, doi:10.1208/s12248-011-9292-7.
[26]  Gürbay, A.; Gonthier, B.; Barret, L.; Favier, A.; H?ncal, F. Cytotoxic effect of ciprofloxacin in primary culture of rat astrocytes and protection by Vitamin E. Toxicology 2007, 229, 54–61, doi:10.1016/j.tox.2006.09.016.
[27]  Kautzky, F.; Hartinger, A.; Kohler, L.D.; Vogt, H.-J. In vitro cytotoxicity of antimicrobial agents to human keratinocytes. J. Eur. Acad. Dermatol. 1996, 6, 159–166, doi:10.1111/j.1468-3083.1996.tb00160.x.
[28]  Kim, S.Y.; Kwak, J.S.; Shin, J.P.; Lee, S.H. Protection of the retina from ischemic injury by the free radical scavenger EGb-761 and zinc in the cat retina. Ophthalmologica 1998, 212, 268–274, doi:10.1159/000027305.
[29]  Stevenson, P.C.; Simmonds, M.S.; Sampson, J.; Houghton, P.J.; Grice, P. Wound healing activity of acylated iridoid glycosides from Scrophularianodosa. Phytother. Res. 2002, 16, 33–35.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133