全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of Porous TiO2 Surfaces Formed on 316L?Stainless Steel by Plasma Electrolytic Oxidation for Stent Applications

DOI: 10.3390/jfb3020349

Keywords: drug eluting stent, plasma electrolytic oxidation, titanium oxide layer, stainless steel, surface porosity

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, a porous oxide layer was formed on the surface of 316L stainless steel (SS) by combining Ti magnetron sputtering and plasma electrolytic oxidation (PEO) with the aim to produce a polymer-free drug carrier for drug eluting stent (DES) applications. The oxidation was performed galvanostatically in Na 3PO 4 electrolyte. The surface porosity, average pore size and roughness varied with PEO treatment duration, and under optimum conditions, the surface showed a porosity of 7.43%, an average pore size of 0.44 μm and a roughness (Ra) of 0.34 μm. The EDS analyses revealed that the porous layer consisted of Ti, O and P. The cross-sectional morphology evidenced a double-layer structure, with a porous titania surface and an un-oxidized dense Ti film towards the interface with 316L SS. After the PEO treatment, wettability and surface free energy increased significantly. The results of the present study confirm the feasibility of forming a porous TiO 2 layer on stainless steel by combining sputtering technology and PEO. Further, the resultant porous oxide layer has the potential to be used as a drug carrier for DES, thus avoiding the complications associated with the polymer based carriers.

References

[1]  Van de Hoeven, B.L.; Pires, N.M.M.; Warda, H.M.; Oemrawsingh, P.V.; Van Vlijmen, B.J.M.; Quax, P.H.A.; Schalij, M.J. Drug-eluting stents: Results, promises and problems. Int. J. Cardiol. 2005, 99, 9–17.
[2]  Kukreja, N.; Onuma, Y.; Daemen, J.; Serruys, P.W. The future of drug eluting stents. Pharmacol. Res. 2008, 57, 171–180.
[3]  Morice, M.C.; Serruys, P.W.; Sousa, J.E.; Fajadet, J.; Ban Hayashi, E.; Perin, M.; Colombo, A.; Schuler, G.; Barragan, P.; Guagliumi, G.; Molnar, F.; Falotico, R. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 2002, 346, 1773–1780.
[4]  Stone, G.W.; Ellis, S.G.; Cox, D.A.; Hermiller, J.; O’Shaughnessy, C.; Mann, J.T.; Turco, M.; Caputo, R.; Bergin, P.; Greenberg, J.; Popma, J.J.; Russell, M.E. A polymer based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 2004, 350, 221–231.
[5]  McFadden, E.P.; Stabile, E.; Regar, E.; Cheneau, E.; Ong, A.T.; Kinnaird, T.; Suddath, W.O.; Weissman, N.J.; Torguson, R.; Kent, K.M.; Pichard, A.D.; Satler, L.F.; Waksman, R.; Serruys, P.W. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet 2004, 364, 1519–1521.
[6]  Wessely, R.; Kastrati, A.; Sch?mig, A. Late restenosis in patients receiving a polymer-coated sirolimus-eluting stent subsequently. Ann. Intern. Med. 2005, 143, 392–394.
[7]  Hausleiter, J.; Kastrati, A.; Wessely, R.; Dibra, A.; Mehilli, J.; Schratzenstaller, T.; Graf, I.; Renke-Gluszko, M.; Behnisch, B.; Dirschinger, J.; Wintermantel, E.; Sch?mig, A. Prevention of restenosis by novel drug-eluting stent system with a dose-adjustable, polymer-free, on-site sent coating. Eur. Heart J. 2005, 26, 1475–1481.
[8]  Zhang, F.; Zheng, Z.; Chen, Y.; Liu, X.; Chen, A.; Jiang, Z. In vivo investigation of blood compatibility of titanium oxide films. J. Biomed. Mater. Res. 1998, 42, 128–133.
[9]  Williams, D.F. Titanium and titanium alloys. In Biocompatibility of Clinical Implant Materials; CRC Press: Boca Raton, FL, USA, 1981; Volume 1, pp. 9–44.
[10]  Song, S.; Park, Y.J.; Cho, M.D.; Kim, J.H.; Jeong, M.H.; Kim, Y.S.; Cho, D.L. Preparation of a drug-eluting stent using a TiO2 film deposited by plasma enhanced chemical vapour deposition as a drug-combining matrix. J. Mater. Chem. 2010, 20, 4792–4801.
[11]  Lazarev, V.B.; Sanygin, V.P.; Kvardakov, A.M.; Saakiyan, L.S.; Efremov, A.P.; Kutsev, A.V. Oxidized aluminum coatings on steel produced by microarc method. Inorg. Mater. 1991, 27, 614–619.
[12]  Gu, W.-C.; Lv, G.-H.; Chen, H.; Chen, G.-L.; Feng, W.-R.; Yang, S.-Z. PEO protective coatings on inner surface of tubes. Surf. Coat. Technol. 2007, 201, 6619–6622, doi:10.1016/j.surfcoat.2006.09.056.
[13]  Frauchiger, V.M.; Schlottig, F.; Gasser, B.; Textor, M. Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials 2004, 25, 593–606.
[14]  Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 122, 73–93.
[15]  Apachitei, I.; Lonyuk, B.; Fratila-Apachitei, L.E.; Zhou, J.; Duszczyk, J. Fatigue response of porous coated titanium biomedical alloys. Scripta Mater. 2009, 61, 113–116.
[16]  Necula, B.S.; Apachitei, I.; Tichelaar, F.D.; Fratila-Apachitei, L.E.; Duszczyk, J. An electron microscopical study on the growth of TiO2-Ag antibacterial coatings on Ti6Al7Nb biomedical alloy. Acta Biomater. 2011, 7, 2751–2757.
[17]  Matykina, E.; Berkani, A.; Skeldon, P.; Thompson, G.E. Real-time imaging of coating growth during plasma electrolytic oxidation of titanium. Electrochim. Acta 2007, 53, 1987–1994.
[18]  Montero, I.; Fernández, M.; Albella, J.M. Pore formation during the breakdown process in anodic Ta2O5 fims. Electrochim. Acta 1987, 32, 171–174.
[19]  Afshar, A.; Vaezi, M.R. Evaluation of electrical breakdown of anodic films on titanium in phosphate-base solutions. Surf. Coat. Technol. 2004, 186, 398–404.
[20]  Ryu, H.S.; Mun, S.J.; Lim, T.S.; Kim, H.C.; Shin, K.S.; Hong, S.H. Microstructure evolution during plasma electrolytic oxidation and its effects on the electrochemical properties of AZ91D Mg alloy. J. Electrochem. Soc. 2011, 158, C266–C273.
[21]  Wang, Y.; Lei, T.; Jiang, B.; Guo, L. Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution. Appl. Surf. Sci. 2004, 233, 258–267.
[22]  Rudnev, V.S.; Yarovaya, T.P.; Egorkin, V.S.; Sinebryukov, S.L.; Gnedenkov, S.V. Properties of coatings formed on titanium by plasma electrolytic oxidation in a phosphate-borate electrolyte. Russ. J. Appl. Chem. 2010, 83, 664–670.
[23]  Parfenov, E.V.; Yerokhin, A.L.; Matthews, A. Frequency response studies for the plasma electrolytic oxidation process. Surf. Coat. Technol. 2007, 201, 8661–8670.
[24]  Sundararajan, G.; Krishna, L.R. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf. Coat. Technol. 2003, 167, 269–277.
[25]  Matykina, E.; Monfort, F.; Berkani, A.; Skeldon, P.; Thompson, G.E.; Gough, J. Characterization of sparks-anodized titanium for biomedical applications. J. Electrochem. Soc. 2007, 154, C279–C285.
[26]  Ding, S.J.; Ju, C.P.; Lin, J.H. Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate. J. Biomed. Mater. Res. 1999, 44, 266–279.
[27]  Huang, P.; Wang, F.; Xu, K.; Han, Y. Mechanical properties of titania prepared by plasma electrolytic oxidation at different voltages. Surf. Coat. Technol. 2007, 201, 5168–5171.
[28]  Otsuka, Y.; Chronos, N.A.; Apkarian, R.P.; Robinson, K.A. Scanning electron microscopic analysis of defects in polymer coatings of three commercially available stents: Comparison of BiodivYsio, Taxus and Cypher stents. J. Invasive Cardiol. 2007, 19, 71–76.
[29]  Song, S.J.; Kim, K.S.; Kim, K.H.; Li, H.J.; Kim, J.H.; Jeong, M.H.; Kim, B.H.; Ko, Y.M.; Cho, D.L. Preparation of a biocompatible stent surface by plasma polymerization followed by chemical grafting of drug compounds. J. Mater. Chem. 2009, 19, 3248–3252.
[30]  Díaz, M.; Sevilla, P.; Galán, A.M.; Escolar, G.; Engel, E.; Gil, F.J. Evaluation of ion release, cytotoxicity, and platelet adhesion of electrochemical anodized 316L stainless steel cardiovascular stents. J. Biomed. Mater. Res. Part B 2008, 87B, 555–561.
[31]  Annarelli, C.C.; Fornazero, J.; Cohen, R.; Bert, J.; Besse, J.L. Collidal protein solutions as a new standard sensor for adhesive wettability measurements. J. Colloid Interface Sci. 1999, 213, 386–394.
[32]  Chrzanowski, W.; Neel, E.A.A.; Armitage, D.A.; Knowles, J.C. Effect of surface treatment on the bioactivity of nickel-titanium. Acta Biomater. 2008, 4, 1969–1984.
[33]  Brier-Russell, D.; Salzman, E.W.; Lindon, J.; Merrill, E.W.; Dincer, A.K.; Wu, J.S. In vitro assessment of interaction of blood with model surfaces: Acrylates and methacrylates. J. Colloid Interface Sci. 1981, 81, 311–318.
[34]  Haynes, C.A.; Norde, W. Globular proteins at solid/liquid interface. Colloid Surface B 1994, 2, 517–566.
[35]  Wang, G.X.; Shen, Y.; Zhang, H.; Quan, X.J.; Yu, Q.S. Influence of surface microroughness by plasma deposition and chemical erosion followed by TiO2 coating upon anticoagulation, hydrophilicity, and corrosion resistance of NiTi alloy stent. J. Biomed. Mater. Res. 2008, 85A, 1096–1102.
[36]  Yang, Z.; Wang, J.; Luo, R.; Li, X.; Chen, S.; Sun, H.; Huang, N. Improved hemocompatibility guided by pulsed plasma tailoring the surface amino functionalities of TiO2 coating for covalent immobilization of heparin. Plasma Process. Polym. 2011, 8, 850–858.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133