全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bone Substitute Effect on Vascularization and Bone Remodeling after Application of phVEGF165 Transfected BMSC

DOI: 10.3390/jfb3020313

Keywords: angiogenesis, bone substitutes, VEGF, osteogenesis, BMSC

Full-Text   Cite this paper   Add to My Lib

Abstract:

VEGF (vascular endothelial growth factor) promotes vascularization and remodeling of bone substitutes. The aim of this study was to examine the effect of distinct resorbable ceramic carriers on bone forming capacities of VEGF transfected bone marrow stromal cells (BMSC). A critical size defect of the radius in rabbits was filled either by a low surface scaffold called beta-TCP (tricalciumphsphate) or the high surface scaffold CDHA (calcium deficient hydroxy-apatite) loaded with autologous BMSC, which were either transfected with a control plasmid or a plasmid coding for phVEGF 165. They were compared to unloaded scaffolds. Thus, six treatment groups (n = 6 in each group) were followed by X-ray over 16 weeks. After probe retrieval, the volume of new bone was measured by micro-CT scans and vascularization was assessed in histology. While only minor bone formation was found in both carriers when implanted alone, BMSC led to increased osteogenesis in both carriers. VEGF promoted vascularization of the scaffolds significantly in contrast to BMSC alone. Bone formation was increased in the beta-TCP group, whereas it was inhibited in the CDHA group that showed faster scaffold degradation. The results indicate that the interaction of VEGF transfected BMSC with resorbable ceramic carrier influences the ability to promote bone healing.

References

[1]  Glowacki, J. Angiogenesis in fracture repair. Clin. Orthop. Relat Res. 1998, 355, S82–S89, doi:10.1097/00003086-199810001-00010.
[2]  Kujala, S.; Raatikainen, T.; Ryhanen, J.; Kaarela, O.; Jalovaara, P. Composite implant of native bovine bone morphogenetic protein (BMP) and biocoral in the treatment of scaphoid nonunions—A preliminary study. Scand. J. Surg. 2002, 91, 186–190. 12164521
[3]  Koo, K.T.; Polimeni, G.; Qahash, M.; Kim, C.K.; Wikesjo, U.M. Periodontal repair in dogs: Guided tissue regeneration enhances bone formation in sites implanted with a coral-derived calcium carbonate biomaterial. J. Clin. Periodontol. 2005, 32, 104–110, doi:10.1111/j.1600-051X.2004.00632.x.
[4]  Gerber, H.P.; Vu, T.H.; Ryan, A.M.; Kowalski, J.; Werb, Z.; Ferrara, N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 1999, 5, 623–628, doi:10.1038/9467.
[5]  Nikol, S.; Engelmann, M.G.; Pelisek, J.; Fuchs, A.; Golda, A.; Shimizu, M.; Mekkaoui, C.; Rolland, P.H. Local perivascular application of low amounts of a plasmid encoding for vascular endothelial growth factor (VEGF165) is efficient for therapeutic angiogenesis in pigs. Acta Physiol. Scand. 2002, 176, 151–159, doi:10.1046/j.1365-201X.2002.01018.x.
[6]  Uchida, S.; Sakai, A.; Kudo, H.; Otomo, H.; Watanuki, M.; Tanaka, M.; Nagashima, M.; Nakamura, T. Vascular endothelial growth factor is expressed along with its receptors during the healing process of bone and bone marrow after drill-hole injury in rats. Bone 2003, 32, 491–501, doi:10.1016/S8756-3282(03)00053-X.
[7]  Peng, H.; Usas, A.; Olshanski, A.; Ho, A.M.; Gearhart, B.; Cooper, G.M.; Huard, J. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J. Bone Miner. Res. 2005, 20, 2017–2027, doi:10.1359/JBMR.050708.
[8]  Hiltunen, M.O.; Ruuskanen, M.; Huuskonen, J.; Mahonen, A.J.; Ahonen, M.; Rutanen, J.; Kosma, V.M.; Mahonen, A.; Kroger, H.; Yla-Herttuala, S. Adenovirus-mediated VEGF-A gene transfer induces bone formation in vivo. FASEB J. 2003, 17, 1147–1149. 12692089
[9]  Tarkka, T.; Sipola, A.; Jamsa, T.; Soini, Y.; Yla-Herttuala, S.; Tuukkanen, J.; Hautala, T. Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues. J. Gene Med. 2003, 5, 560–566, doi:10.1002/jgm.392.
[10]  Geiger, F.; Bertram, H.; Berger, I.; Lorenz, H.; Wall, O.; Eckhardt, C.; Simank, H.G.; Richter, W. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J. Bone Miner. Res. 2005, 20, 2028–2035, doi:10.1359/JBMR.050701.
[11]  Geiger, F.; Lorenz, H.; Xu, W.; Szalay, K.; Kasten, P.; Claes, L.; Augat, P.; Richter, W. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 2007, 41, 516–522, doi:10.1016/j.bone.2007.06.018.
[12]  Kasten, P.; Vogel, J.; Geiger, F.; Niemeyer, P.; Luginbuhl, R.; Szalay, K. The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials 2008, 29, 3983–3992, doi:10.1016/j.biomaterials.2008.06.014.
[13]  Kasten, P.; Vogel, J.; Luginbuhl, R.; Niemeyer, P.; Tonak, M.; Lorenz, H.; Helbig, L.; Weiss, S.; Fellenberg, J.; Leo, A.; Simank, H.G.; Richter, W. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Biomaterials 2005, 26, 5879–5889, doi:10.1016/j.biomaterials.2005.03.001. 15913762
[14]  Kasten, P.; Luginbuhl, R.; Van, G.M.; Barkhausen, T.; Krettek, C.; Bohner, M.; Bosch, U. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix. Biomaterials 2003, 24, 2593–2603, doi:10.1016/S0142-9612(03)00062-0.
[15]  Louisia, S.; Stromboni, M.; Meunier, A.; Sedel, L.; Petite, H. Coral grafting supplemented with bone marrow. J. Bone Joint Surg. Br. 1999, 81, 719–724, doi:10.1302/0301-620X.81B4.9358.
[16]  Bohner, M. Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury 2000, 31, 37–47, doi:10.1016/S0020-1383(00)80022-4.
[17]  LeGeros, R.Z. Properties of osteoconductive biomaterials: Calcium phosphates. Clin. Orthop. Relat Res. 2002, 395, 81–98, doi:10.1097/00003086-200202000-00009.
[18]  Reyes, M.; Lund, T.; Lenvik, T.; Aguiar, D.; Koodie, L.; Verfaillie, C.M. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001, 98, 2615–2625, doi:10.1182/blood.V98.9.2615.
[19]  Wittbjer, J.; Palmer, B.; Thorngren, K.G. Osteogenetic properties of reimplanted decalcified and undecalcified autologous bone in the rabbit radius. Scand. J. Plast. Reconstr. Surg. 1982, 16, 239–244, doi:10.3109/02844318209026214.
[20]  Yang, R.; Davies, C.M.; Archer, C.W.; Richards, R.G. Immunohistochemistry of matrix markers in Technovit 9100 New-embedded undecalcified bone sections. Eur. Cell Mater. 2003, 6, 57–71. discussion , , 57–71. 14722903
[21]  Hing, K.A.; Wilson, L.F.; Buckland, T. Comparative performance of three ceramic bone graft substitutes. Spine J. 2007, 7, 475–490, doi:10.1016/j.spinee.2006.07.017.
[22]  Muschler, G.F.; Nakamoto, C.; Griffith, L.G. Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg. Am. 2004, 86-A, 1541–1558. 15252108
[23]  Clarke, S.A.; Hoskins, N.L.; Jordan, G.R.; Marsh, D.R. Healing of an ulnar defect using a proprietary TCP bone graft substitute, JAX, in association with autologous osteogenic cells and growth factors. Bone 2007, 40, 939–947, doi:10.1016/j.bone.2006.11.004.
[24]  Axelrad, T.W.; Kakar, S.; Einhorn, T.A. New technologies for the enhancement of skeletal repair. Injury 2007, 38, S49–S62, doi:10.1016/j.injury.2007.02.010.
[25]  Street, J.; Bao, M.; de Guzman, L.; Bunting, S.; Peale, F.V., Jr.; Ferrara, N.; Steinmetz, H.; Hoeffel, J.; Cleland, J.L.; Daugherty, A.; van Bruggen, N.; Redmond, H.P.; Carano, R.A.; Filvaroff, E.H. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. USA 2002, 99, 9656–9661, doi:10.1073/pnas.152324099. 12118119
[26]  Alam, I.; Asahina, I.; Ohmamiuda, K.; Enomoto, S. Comparative study of biphasic calcium phosphate ceramics impregnated with rhBMP-2 as bone substitutes. J. Biomed. Mater. Res. 2001, 54, 129–138, doi:10.1002/1097-4636(200101)54:1<129::AID-JBM16>3.0.CO;2-D.
[27]  Alam, M.I.; Asahina, I.; Ohmamiuda, K.; Takahashi, K.; Yokota, S.; Enomoto, S. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials 2001, 22, 1643–1651, doi:10.1016/S0142-9612(00)00322-7.
[28]  Yang, P.; Wang, C.; Shi, Z.; Huang, X.; Dang, X.; Li, X.; Lin, S.F.; Wang, K. rhVEGF 165 delivered in a porous beta-tricalcium phosphate scaffold accelerates bridging of critical-sized defects in rabbit radii. J. Biomed. Mater. Res. A 2010, 92, 626–640. 19235222
[29]  Nikol, S.; Huehns, T.Y. Preclinical and clinical experience in vascular gene therapy: Advantages over conservative/standard therapy. J. Invasive. Cardiol. 2001, 13, 333–338. 11287726
[30]  Kujala, S.; Raatikainen, T.; Ryhanen, J.; Kaarela, O.; Jalovaara, P. Composite implant of native bovine bone morphogenetic protein (BMP), collagen carrier and biocoral in the treatment of resistant ulnar nonunions: Report of five preliminary cases. Arch. Orthop. Trauma Surg. 2004, 124, 26–30, doi:10.1007/s00402-003-0599-4.
[31]  McClellan, J.W.; Mulconrey, D.S.; Forbes, R.J.; Fullmer, N. Vertebral bone resorption after transforaminal lumbar interbody fusion with bone morphogenetic protein (rhBMP-2). J. Spinal Disord. Tech. 2006, 19, 483–486, doi:10.1097/01.bsd.0000211231.83716.4b.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133