This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions.
References
[1]
Williams, D.F. Definitions in Biomaterials; Williams, D.F., Ed.; Elsevier: Amsterdam, The Netherland, 1987; p. 72.
[2]
Williams, D.F. How medical device technology has adapted to changing scenarios. Med. Devices Techn. 2003, 14(8), 10–13.
[3]
Dee, K.C.; Puleo, D.A.; Bizios, R. An Introduction to Tissue-Biomaterial Interactions; John Wiley & Sons: Hoboken, NJ, USA, 2002.
Leong, K.F.; Cheah, C.M.; Chua, C.K. Solid freeform fabrication of three dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003, 24(13), 2363–2378.
[6]
Wang, Z.G.; Wan, L.S.; Xu, Z.K. Surface engineering of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. J. Membr. Sci. 2007, 304(1–2), 8–23, doi:10.1016/j.memsci.2007.05.012.
[7]
Andrade, J.D.; Hlady, V. Protein adsorption and materials biocompatibility. A tutorial review and suggested hypothesis. Adv. Polym. Sci. 1986, 79, 1–63, doi:10.1007/3-540-16422-7_6.
[8]
Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry; W. H. Freeman and Company: New York, NY, USA, 2002; pp. 54–64.
[9]
Norde, W.; Anusiem, A.C.I. Adsorption, desorption and re-adsorption of proteins on solid surfaces. Coll. Surf. 1992, 66(1), 73–80, doi:10.1016/0166-6622(92)80122-I.
[10]
Robertson, A.D. Intramolecular interactions at protein surfaces and their impact on protein function: A review. Trends Biochem. Sci. 2002, 27(10), 521–526, doi:10.1016/S0968-0004(02)02184-9.
[11]
Horbett, T.A.; Brash, J.L. Proteins at interfaces: Current issues and future prospects. ACS Symp. Ser. 1987, 343, 1–33, doi:10.1021/bk-1987-0343.ch001.
[12]
Voet, D.; Voet, J.G.; Pratt, C.W. Fundamentals of Biochemistry; John Wiley & Sons Inc.: New York, NY, USA, 2002.
[13]
Chiti, F.; Dobson, C.M. Protein misfolding, functional amylo?d and human disease. Ann. Rev. Biochem. 2006, 75, 333–366, doi:10.1146/annurev.biochem.75.101304.123901.
[14]
Nakanishi, K.; Sakiyama, T.; Imamura, K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon: A review. J. Biosci. Bioeng. 2001, 91(3), 233–244.
[15]
Van Tassel, P.R. Biomolecules at Interfaces, in Encyclopaedia of Polymer Science and Technology, 3rd ed.; Wiley Interscience: New York, NY, USA, 2003; pp. 285–305.
[16]
Norde, W.; Haynes, C.A. Proteins at interfaces II: Reversibility and the mechanism of protein adsorption. ACS Symp. Ser. 1995, 602, 26–40.
[17]
Lundstr?m, I. Models of protein adsorption on solid surfaces. Prog. Coll. Polym. Sci. 1985, 70, 76–82, doi:10.1007/BFb0114308.
[18]
Horbett, T.A.; Brash, J.L. Proteins at interfaces: Current issues and future prospects. ACS Symp. Ser. 1987, 343, 1–33, doi:10.1021/bk-1987-0343.ch001.
[19]
Castells, V.; van Tassel, P.R. Conformational transition free energy profiles of an adsorbed, lattice model protein by multicanonical Monte Carlo simulation. J. Chem. Phys. 2005, 122(8), 4707–4716.
[20]
Patel, A.J.; Varilly, P.; Jamadagni, S.N.; Hagan, M.; Chandler, D.; Garde, S. Sitting at the edge: How biomolecules use hydrophobicity to tune their interactions and function. J. Phys. Chem. B 2012, 116, 2498–2503.
[21]
Wertz, C.F.; Santore, M.M. Effect of surface hydrophobicity on adsorption and relaxation kinetics of albumin and fibrinogen: Single-species and competitive behavior. Langmuir 2001, 17(10), 3006–3016.
[22]
Iwasaki, Y.; Nakabayashi, N.; Ishihara, K. Nonbiofouling surfaces generated from phosphorylcholine-bearing polymers. In Proteins at Solid-Liquid Interfaces; Springer-Verlag: Berlin, Germany, 2006; pp. 303–310.
[23]
Karlsson, L.M.; Schubert, M.; Ashkenov, N.; Arwin, H. Protein adsorption in porous silicon gradients monitored by spatially-resolved spectroscopic ellipsometry. Thin Solid Films 2004, 726, 455–456.
[24]
Malemsten, M. Formation of adsorbed protein layers. J. Colloid Interface Sci. 1998, 207(2), 186–199, doi:10.1006/jcis.1998.5763.
[25]
Malmsten, M.; van Alstine, J.M. Adsorption of poly(ethylene glycol) amphiphiles to form coatings which inhibit protein adsorption. J. Colloid Interface Sci. 1996, 177(2), 502–512, doi:10.1006/jcis.1996.0064.
Gray, J.J. The interaction of proteins with solid surfaces. Curr. Opin. Struc. Biol. 2004, 14(1), 110–115, doi:10.1016/j.sbi.2003.12.001.
[28]
Latour, R.A. Encyclopedia of biomaterials and biomedical engineering. In Biomaterials: Protein-Surface Interactions; Taylor & Francis: Washington, DC, USA, 2005.
[29]
Hartvig, R.A.; van der Weert, M.; ?stergaard, J.; Jorgensen, L.; Jensen, H. Protein adsorption at charged surfaces: The role of electrostatic interactions and interfacial charge regulation. Langmuir 2011, 27(6), 2634–2643.
[30]
Silva, R.A.; Urz, M.D.; Petri, D.F.; Dubin, P.L. Protein adsorption onto polyelectrolyte layers: Effects of protein hydrophobicity and charge anisotropy. Langmuir 2010, 26(17), 14032–14038.
[31]
Ponche, A.; Bigerelle, M.; Anselme, K. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 1: Physicochemical effects isotropy. Proc. Inst. Mech. Eng. H. 2010, 224(12), 1471–1486, doi:10.1243/09544119JEIM900.
[32]
Anselme, K.; Ponche, A.; Bigerelle, M. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: Biological aspects. Proc. Inst. Mech. Eng. H. 2010, 224(12), 1487–1507.
[33]
Lord, M.S.; Foss, M.; Besenbacher, F. Influence of nanoscale surface topography on protein adsorption and cellular response: A review. Nano Today 2010, 5(1), 66–78, doi:10.1016/j.nantod.2010.01.001.
[34]
Roach, P.; Eglin, D.; Rohde, K.; Perry, C.C. Modern biomaterials: Bulk properties and implications of surface modifications: A review. J. Mat. Sci. Mat. Med. 2007, 18(7), 1263–1277, doi:10.1007/s10856-006-0064-3.
[35]
Cai, K.; Bossert, J.; Jandt, K.D. Does the nanometer scale topography of titanium influence protein adsorption and cell proliferation? Coll. Surf. B 2006, 49(2), 136–144, doi:10.1016/j.colsurfb.2006.02.016.
[36]
Han, M.; Sethuraman, A.; Kane, R.S.; Belfort, G. Nanometer-scale roughness having little effect on the amount or structure of adsorbed protein. Langmuir 2003, 19(23), 9868–9872.
[37]
Galli, C.; Coen, M.C.; Hauert, R.; Katanaevc, V.L.; Gr?ning, P.; Schlapbach, L. Creation of nanostructures to study the topographical dependency of protein adsorption. Coll. Surf. B 2002, 26(3), 255–267.
[38]
Fournier, R.L. Solute transport in biological systems. In Basic Transport Phenomena in Biomedical Engineering; Taylor & Francis: Washington, DC, USA, 1999.
[39]
Lee, W.K.; McGuire, J.; Bothwell, M.K. Competitive adsorption of bacteriophage T4 lysozyme stability variants at hydrophilic glass surfaces. J. Colloid Interface Sci. 2004, 269(1), 251–254, doi:10.1016/j.jcis.2003.07.009.
[40]
Fang, F.; Szleifer, I. Effect of molecular structure on the adsorption of protein on surfaces with grafted polymers. Langmuir 2002, 18(14), 5497–5510, doi:10.1021/la020027r.
[41]
Halperin, A. Polymer brushes that resist adsorption of model proteins: Design parameters. Langmuir 1999, 15(7), 2525–2533, doi:10.1021/la981356f.
Vladkova, T.G. Surface engineered polymeric biomaterials with improved biocontact properties: A review. Int. J. Polym. Sci. 2010, 2010, 296094:1–296094:22.
[44]
Gong, P.; Grainger, D.W. Nonfouling surfaces: A review of principles and applications for microarray capture assay designs. Methods Mol. Biol. 2007, 381, 59–92.
[45]
Morent, R.; de Geyter, N.; Desmet, T.; Dubruel, P.; Leys, C. Plasma surface modification of biodegradable polymers: A review. Plasma Proces. Polym. 2011, 8(3), 171–190, doi:10.1002/ppap.201000153.
[46]
Siow, K.S.; Britcher, L.; Kumar, S.; Griesser, H.J. Reactive surfaces for biomolecule immobilization and cell colonization: A review. Plasma Proces. Polym. 2006, 3(6–7), 392–418, doi:10.1002/ppap.200600021.
[47]
Eloy, R.; Parrat, D.; Duc, T.M.; Legeay, G.; Bechetoille, A. In vitro evaluation of inflammatory cell response after CF4 plasma surface modification of PMMA intraocular lenses. J. Cataract. Refract. Surg. 1993, 9, 364–370.
[48]
Tate, R.S.; Fryer, D.S.; Pasqualini, S.; Montague, M.F.; de Pablo, J.J.; Nealey, P.F. Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates. J. Chem. Phys. 2001, 115(21), 9982–9990.
[49]
Hoffman, A.S. Surface modification of polymers: Physical, chemical, mechanical and biological methods. Macromol. Symposia 1996, 101(1), 443–454, doi:10.1002/masy.19961010150.
Voronov, A.; Shafranska, O. Dependence of thin polystyrene films stability on the thickness of grafted polystyrene brushes. Polymer 2003, 44(1), 277–281, doi:10.1016/S0032-3861(02)00667-5.
[53]
Peeva, P.D.; Pieper, T.; Ulbricht, M. Tuning the ultrafiltration properties of anti-fouling thin-layer hydrogel polyethersulfone composite membranes by suited crosslinker monomers and photo-grafting conditions. J. Membrane Sci. 2010, 362(1–2), 560–568, doi:10.1016/j.memsci.2010.07.016.
[54]
Advincula, R. Polymer brushes by anionic and cationic surface-initiated polymerization (SIP). Adv. Polym. Sci. 2006, 197, 107–136, doi:10.1007/12_066.
[55]
Zhao, B.; Brittain., W.J.; Cheng, S.Z.D. Study of tethered polystyrene-b-poly(methyl methacrylate) and polystyrene-b-poly (methyl acrylate) brushes on flat silicate substrates. Macromolecules 2000, 33(23), 8821–8827.
[56]
Berndt, E.; Behnke, S.; Dannehl, A.; Gajda, A.; Wingender, J.; Ulbricht, M. Functional coatings for anti-biofouling applications by surface segregation of block copolymer additives. Polymer 2010, 51(25), 5910–5920, doi:10.1016/j.polymer.2010.10.002.
[57]
Luzinov, I.; Minko, S.; Tsukruk, V. Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layer. Prog. Polym. Sci. 2004, 29(7), 635–698, doi:10.1016/j.progpolymsci.2004.03.001.
[58]
Lupitskyy, R.; Roiter, J.; Tsitsilianis, C.; Minko, S. From smart polymer molecules to responsive nanostructured surfaces. Langmuir 2005, 21(19), 8591–8593, doi:10.1021/la050404a.
[59]
Liu, X.; Ye, Q.; Yu, B.; Liang, Y.; Liu, W.; Zhou, F. Switching water droplet adhesion using responsive polymer brushes. Langmuir 2010, 26(14), 12377–12382.
[60]
Wu, C.; Zhou, S. First observation of the molten globule state of a single homopolymer chain. Phys. Rev. Lett. 1996, 77(14), 3053–3055, doi:10.1103/PhysRevLett.77.3053.
[61]
Wu, C.; Zhou, S. Mixed molecular brushes with PLLA and PS side chains prepared by AGET ATRP and ring-opening polymerization. Macromolecules 1995, 28(15), 5388–5390.
[62]
Halperin, A. Compression induced phase transitions in PEO brushes: The n-cluster. Model. Eur. Phys. J. B 1998, 3(3), 359–364, doi:10.1007/s100510050323.
[63]
Plunkett, K.N.; Zhu, X.; Moore, J.S.; Leckband, D.E. PNIPAM chain collapse depends on the molecular weight and grafting density. Langmuir 2006, 22(9), 4259–4266.
[64]
Rapoport, N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 2007, 32(8–9), 962–990, doi:10.1016/j.progpolymsci.2007.05.009.
Cole, M.A.; Voelcker, N.H.; Thissen, H.; Griesse, H.J. Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions: A review. Biomaterials 2009, 30(9), 1827–1850, doi:10.1016/j.biomaterials.2008.12.026.
[67]
Huber, D.L.; Manginell, R.P.; Samara, M.A.; Kim, B.I.; Bunker, B.C. Programmed adsorption and release of proteins in a microfluidic device. Science 2003, 301, 352–354.
[68]
De Las Heras Alarcón, C.; Pennadam, S.; Alexander, C. Stimuli responsive polymers for biomedical applications: Critical review. Chem. Soc. Rev. 2005, 34(3), 276–285.
Holmberg, K.; Jonsson, B.; Kronberg, B.; Lindman, B. Surfactants and Polymers in Aqueous Solution; Wiley: Chichester, UK, 2003.
[74]
Lee, A.; Tang, S.K.Y.; Mace, C.R.; Whitesides, G.M. Denturation of Proteins by SDS and by tetraalkylammonium dodecyl sulfates. Langmuir 2011, 27, 11560–11574.
[75]
Shim, M.; Kam, N.W.S.; Chen, J.R.; Li, Y.; Dai, H. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2002, 2(4), 285–288, doi:10.1021/nl015692j.
[76]
Liu, H.; Xiao, H. Adsorption of poly(ethylene oxide) with different molecular weights on the surface of silica nanoparticles and the suspension stability. Mater. Lett. 2008, 62(6–7), 870–873, doi:10.1016/j.matlet.2007.06.079.
[77]
Poncin-Epaillard, F.; Legeay, G. Surface engineering of biomaterials with plasma techniques: A review. J. Biomater. Sci. Polym. Ed. 2003, 14(10), 1005–1028, doi:10.1163/156856203769231538.
[78]
G?lander, C.G.; J?nsson, C.; Vladkova, T.; Stenius, P.; Eriksson, J.C. Preparation and protein adsorption properties of photopolymerized hydrophilic films containing Nvinylpyrrolidone (NVP), acrylic acid (AA) or ethylene oxide (ETO) units as studied by ESCA. Coll. Surf. 1986, 21, 149–165, doi:10.1016/0166-6622(86)80088-9.
[79]
Ma, H.; Hyun, J.; Stiller, P.; Chilkoti, A. Non-fouling oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv. Mat. 2004, 16, 283–290.
[80]
Beyer, D.; Knoll, W.; Ringsdorf, H.; Wang, J.H.; Timmons, R.B.; Sluka, P. Reduced protein adsorption on plastics via direct plasma deposition of triethylene glycol monoallyl ether. J. Biomed. Mater. Res. 1997, 36(2), 181–189, doi:10.1002/(SICI)1097-4636(199708)36:2<181::AID-JBM6>3.0.CO;2-G.
[81]
Vrlinic, T. Development of New Anti-Bioadhesive Surfaces for Specific Neurodegenerative AgentsPh.D. Thesis, Université du Maine, Le Mans, France, 2011.
[82]
Vrlinic, T.; Debarnot, D.; Legeay, G.; Coudreuse, A.; El-Moualij, B.; Zorzi, W.; Perret-Liaudet, A.; Quadrio, I.; Mozetic, M.; Poncin-Epaillard, F. Are the interactions between recombinant prion protein and polymeric surfaces related to the hydrophilic and hydrophobic balance? Macromol. Biosci. 2012, 12, 830–839.
[83]
Shin, H.; Jo, S.; Mikos, A.G. Biomimetic materials for tissue engineering. Biomaterials 2003, 24(24), 4353–4364.