Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.
References
[1]
Hasebe, T.; Shimada, A.; Suzuki, T.; Matsuoka, Y.; Saito, T.; Yohena, Y. Fluorinated diamond-like carbon as antithrombogenic coating for blood-contacting devices. J. Biomed. Mater. Res. A 2006, 76, 86–94. 16138324
[2]
Hussain, M.; Siedlecki, C. The platelet integrin alpha(IIb) beta(3) imaged by atomic force microscopy on model surfaces. Micron 2004, 35, 565–573, doi:10.1016/j.micron.2004.02.010.
[3]
Massa, T.; Yang, M.; Ho, J. Fibrinogen surface distribution correlates to platelet adhesion pattern on fluorinated surface-modified polyetherurethane. Biomaterials 2005, 26, 7367–7376, doi:10.1016/j.biomaterials.2005.05.063.
[4]
Yang, P.; Huang, N.; Lenge, Y. Activation of platelets adhered on amorphous hydrogenated carbon films synthesized by plasma immersion ion implantation-deposition (PIII-D). Biomaterials 2003, 24, 2821–2829, doi:10.1016/S0142-9612(03)00091-7.
[5]
Plant, S.; Grant, D.; Leach, L. Surface modification of NiTi alloy and human platelet activation under static and flow conditions. Mater. Lett. 2007, 61, 2864–2867, doi:10.1016/j.matlet.2007.01.032.
[6]
Cui, F.; Li, D. A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films. Surf. Coat. Technol. 2000, 131, 481–487, doi:10.1016/S0257-8972(00)00809-4.
[7]
Hauert, R.; Müller, U. An overview on tailored tribological and biological behavior of diamond-like carbon. Diam. Relat. Mater. 2003, 12, 171–177, doi:10.1016/S0925-9635(03)00019-0.
[8]
Vinnichenko, M.; Gago, R.; Huang, N. Spectroscopic ellipsometry investigation of amorphous carbon films with different sp3 content: Relation with protein adsorption. Thin Solid Films 2004, 455–456, 530–534, doi:10.1016/j.tsf.2003.11.253.
[9]
Maguire, P.; McLaughlin, J.; Okpalugo, T. Mechanical stability, corrosion performance and bioresponse of amorphous diamond-like carbon for medical stents and guidewires. Diam. Relat. Mater. 2005, 14, 1277–1288, doi:10.1016/j.diamond.2004.12.023.
[10]
Lackner, J.M.; Waldhauser, W. Inorganic PVD and CVD coatings in medicine—A review of protein and cell adhesion on coated surfaces. J. Adhes. Sci. Technol. 2010, 24, 925–961, doi:10.1163/016942409X12598231568023.
[11]
Charitidis, C.; Logothetidis, S.; Gioti, M. A comparative study of the nanoscratching behavior of amorphous carbon films grown under various deposition conditions. Surf. Coat. Technol. 2000, 125, 201–206, doi:10.1016/S0257-8972(99)00546-0.
Kubova, O.; Svorcik, V.; Heitz, J. Characterization and cytocompatibility of carbon layers prepared by photo-induced chemical vapor deposition. Thin Solid Films 2007, 515, 6765–6772, doi:10.1016/j.tsf.2007.02.014.
Maitz, M.F.; Gago, R.; Abendroth, B.; Camero, M.; Caretti, I.; Kreissig, L. Hemocompatibility of low-friction boron-carbon-nitrogen containing coatings. J. Biomed. Mater. Res. B 2006, 77, 179–187.
[19]
Hong, J.; Andersson, J.; Nilsson Ekdahl, K.; Elgue, G.; Axen, N; Larsson, R.; Nilsson, B. Titanium is a highly thrombogenic biomaterial. Possible implications for osteogenesis. Thromb. Haemost. 1999, 82, 58–64. 10456455
[20]
Hauert, R. A review of modified DLC coatings for biological applications. Diam. Relat. Mater. 2003, 12, 583–589, doi:10.1016/S0925-9635(03)00081-5.
[21]
Roy, R.K.; Lee, K.-R. Biomedical applications of diamond-like carbon coatings: A review. J. Biomed. Mater. Res. B 2007, 38B, 72–84.
[22]
Jones, M.I.; McColl, I.R.; Grant, D.M.; Parker, K.G.; Parker, T.L. Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. J. Biomed. Mater. Res. 2000, 52, 413–421, doi:10.1002/1097-4636(200011)52:2<413::AID-JBM23>3.0.CO;2-U.
[23]
Cui, F.Z.; Li, D.J. A review of investigations on biomcompatibility of diamond-like carbon and carbon nitride films. Surf. Coat. Technol. 2000, 131, 481–487, doi:10.1016/S0257-8972(00)00809-4.
[24]
Gorbet, M.B.; Sefton, M.V. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocyte. Biomaterials 2004, 25, 5681–5703, doi:10.1016/j.biomaterials.2004.01.023.
[25]
Andrews, R.K.; Lopez, J.A.; Berndt, MC. Molecular mechanisms of platelet adhesion and activation. Int. J. Biochem. Cell Biol. 1997, 29, 91–105, doi:10.1016/S1357-2725(96)00122-7.
[26]
Bithell, T.C. The physiology of primary hemostasis. In Wintrobe’s Clinical Hematology, 9th; Lee, G.R., Bithell, T.C., Foerster, J., Athens, J.W., Lukens, J., Eds.; Lea and Febinger: Philadelphia, PA, USA, 1993.
Marcus, A.J. Platelet activation. In Atherosclerosis and Coronary Artery Disease; Fuster, V., Ross, R., Topol, E.J., Eds.; Lippincott-Raven Publishers: Philadelphia, PA, USA, 1996; pp. 607–637.
[29]
Calvette, J.J. Clues for understanding the structure and function of a prototypic human integrin: The platelet glycoprotein IIb/IIIa complex. Thromb. Haemost. 1994, 72, 1–15. 7974356
[30]
Sixma, J.J. teraction of blood platelets with the vessel wall. In Haemostasis and Thrombosis, 3rd; Bloom, A., Forbes, C.D., Eds.; Churchill Livingston: New York, NY, USA, 1994; pp. 259–285.
[31]
Charo, I.F.; Nannizzi, I.; Phillips, D.R.; Hsu, M.A.; Scarborough, R.M. Inhibition of fibrinogen binding to GPIIb-IIIa by a GPIIIa peptide. J. Biol. Chem. 1991, 266, 1415–1421. 1703149
[32]
Gawaz, M.P. Blood Platelets; Thieme: Stuttgart, Germany, 2001; pp. 12–24.
[33]
Nieuwland, R.; Bercmans, R.J.; Rotteveel-Eijkman, R.C. Cell-derived microparticle gnerated in patients during cardiopulmonary bypass are highly procoagulant. Circulation 1997, 96, 3534–3541, doi:10.1161/01.CIR.96.10.3534.
Cholokis, C.H.; Zingg, W.; Sefton, M.V. Effect of heparin-PVA hydrogel on platelets in a chronic canine AV shunt. J. Biomed. Mater. Res. 1989, 23, 417–441, doi:10.1002/jbm.820230404.
[37]
Hanson, S.R.; Harker, L.A.; Ratner, B.D.; Hoffman, A.S. In vivo evaluation of artificial surfaces with a nonhuman primate model of arterial thrombosis. J. Lab. Clin. Med. 1980, 95, 289–304. 6766491
[38]
Ip, W.F.; Sefton, M.V. Platelet consumption by NHLBI reference materials and silastic. J. Biomed. Mater. Res. 1991, 25, 1321–1324, doi:10.1002/jbm.820251012.
[39]
Sanak, M.; Jakiela, B.; Wegrzyn, W. Assessment of hemocompatibility of materials with arterial blood flow by platelet functional test. Bull. Pol. Acad. Sci. Tech. Sci. 2010, 58, 317–321.
[40]
Tans, G.; Rosing, J.; Christella, M. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood 1991, 88, 2641–2648.
[41]
Gemmell, C.H. Assessment of material-induced procoagulant activity by a modified Russell viper venom coagulation time test. J. Biomed. Mater. Res. 1998, 42, 611–616, doi:10.1002/(SICI)1097-4636(19981215)42:4<611::AID-JBM18>3.0.CO;2-D.
[42]
Sbrana, S.; Della Pina, F.; Rizza, A.; Buffa, M.; De Filipis, R.; Gianetti, J.; Clerico, A. relationship between optical aggregometry (type born) and flow cytometry in evaluation ADP-induced platelet activation. Cytom. B Clin. Cytom. 2008, 74, 30–39.
[43]
Sims, P.J.; Wiedmer, T. Induction of cellular procoagulant activity by the membrane attack complex of complement. Semin. Cell Biol. 1995, 6, 275–282. 8562920
Nomura, S.; Ozaki, Y.; Ikeda, Y. Function and role of microparticles in various clinical settings. Thromb. Res. 2008, 123, 8–23, doi:10.1016/j.thromres.2008.06.006.
[46]
Blann, A.; Shantsila, E.; Shantsila, A. Microparticles and arterial disease. Semin. Thromb. Hemost. 2009, 35, 488–496, doi:10.1055/s-0029-1234144.
[47]
Siljander, P.; Carpen, O.; Lassila, R. Platelet derived microparticles associate with fibrin during thrombosis. Blood 1996, 87, 4651–4653. 8639834
[48]
Holme, P.A.; Solum, N.O.; Brosstad, F.; Pedersen, T.; Kveine, M. Microvesicles bind soluble fibrinogen, adhere to immmobilized fibrinogen and coaggregates with platelets. Thromb. Haemost. 1998, 79, 389–394. 9493596
[49]
Cozens-Roberts, C.; Quinn, A.; Lauffenburger, D.A. Receptor-mediated adhesion phenomena. I. Model studies with the radial-flow detachment assay. Biophys. J. 1990, 58, 107–125, doi:10.1016/S0006-3495(90)82357-2.
[50]
Cozens-Roberts, C.; Quinn, A.; Lauffenburger, D.A. Receptor-mediated cell attachment and detachment kinetics. II. Experimental model studies with the radial-flow detachment assay. Biophys. J. 1990, 58, 857–872, doi:10.1016/S0006-3495(90)82431-0.
[51]
Decave, E.; Garrivier, D.; Brechet, Y.; Fourcade, B.; Bruckert, F. Shear flow-induced detachment kinetics of Dictyostelium discoideum cells from solid substrate. Biophys. J. 2002, 82, 2383–2395, doi:10.1016/S0006-3495(02)75583-5.
[52]
Di Milla, P.A.; Stone, J.A.; Quinn, A.; Albelda, S.M.; Lauffenburger, D.A. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 1993, 122, 729–737, doi:10.1083/jcb.122.3.729.
Spijker, H.T.; Graaff, R.; Boonstra, P.W.; Busscher, J.H.; van Oeveren, W. On the influence of flow conditions and wettability on blood material interactions. Biomaterials 2003, 24, 4717–4727, doi:10.1016/S0142-9612(03)00380-6.
[55]
Bonnefoy, A.; Liu, Q.; Legrand, C.; Frojmovic, M.M. Efficiency of platelet adhesion to fibrinogen depends on both cell activation and flow. Biophys.J. 2000, 78, 2834–2843, doi:10.1016/S0006-3495(00)76826-3.
[56]
Tandon, P.; Diamond, S.L. Hydrodynamic effects and interactions of platelets and their aggregates in linear shear flow. Biophys. J. 1997, 73, 2819–2835, doi:10.1016/S0006-3495(97)78311-5.
Lackner, J.M. Innovatives Schichtdesign Mittels Pulsed Laser Deposition. Ph.D. Dissertation, University of Leoben: Leoben, Austria. 2003.
[59]
Lackner, J.M.; Waldhauser, W.; Schwarz, M.; Mahoney, L.; Major, L.; Major, B. Polymer pre-treatment by linear anode layer source plasma for adhesion improvement of sputtered TiN coatings. Vacuum 2008, 83, 302–307, doi:10.1016/j.vacuum.2008.06.006.
[60]
Kahn, M. Room-Temperature Deposition of DLC Films by an Ion Beam Method, Reactive Magnetron Sputtering and Pulsed Laser Deposition: Process Design, Film Structure and Film Properties. Ph.D. Dissertation, University of Leoben: Leoben, Austria. 2009.
[61]
Lackner, J.M.; Waldhauser, W.; Alamanou, A.; Teichert, C.; Schmied, F.; Major, L. Mechanisms for self-assembling topography formation in low-temperature vacuum deposition of inorganic coatings on polymer surface. Bull. Pol. Acad. Sci. Tech. Sci. 2010, 58, 281–294.
[62]
Seyfert, U.T.; Biehl, V.; Schenk, J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4. Biomol. Eng. 2002, 19, 91–96, doi:10.1016/S1389-0344(02)00015-1.
[63]
Otto, M.; Klein, C.L.; K?hler, H.; Wagner, M.; R?hrig, O.; Kirkpatrick, C.J. Dynamic blood cell contact with biomaterials: Validation of a flow chamber system according to international standards. J. Mater. Sci. Mater. Med. 1997, 8, 119–129, doi:10.1023/A:1018515001850.
[64]
Streller, U.; Sperling, C.; Hübner, J.; Ranke, R.; Werner, C. Design and evaluation of novel blood incubation systems for in vitro hemocompatibility assessment of planar solid surface. J. Biomed. Mater. Res. B 2003, 66, 379–390.
[65]
Nomura, S.; Shouzu, A.; Tamoto, K.; Togane, Y.; Goto, S.; Uchiyama, S.; Ikeda, Y. Assessment of an ELISA kit for platelet-derived microparticles by joint research at many institutes in Japan. J. Atheroscer. Thromb. 2009, 16, 878–887.