全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord

DOI: 10.3390/jfb3040839

Keywords: brain, spinal cord, microglia, astrocytes, biocompatibility, hydrogel, tissue engineering

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tissue engineering strategies employing biomaterials have made great progress in the last few decades. However, the tissues of the brain and spinal cord pose unique challenges due to a separate immune system and their nature as soft tissue. Because of this, neural tissue engineering for the brain and spinal cord may require re-establishing biocompatibility and functionality of biomaterials that have previously been successful for tissue engineering in the body. The goal of this review is to briefly describe the distinctive properties of the central nervous system, specifically the neuroimmune response, and to describe the factors which contribute to building polymer hydrogels compatible with this tissue. These factors include polymer chemistry, polymerization and degradation, and the physical and mechanical properties of the hydrogel. By understanding the necessities in making hydrogels biocompatible with tissue of the brain and spinal cord, tissue engineers can then functionalize these materials for repairing and replacing tissue in the central nervous system.

References

[1]  Fournier, E.; Passirani, C.; Colin, N.; Sagodira, S.; Menei, P.; Benoit, J.-P.; Montero-Menei, C.N. The brain tissue response to biodegradable poly(methylidene malonate 2.1.2)-based microspheres in the rat. Biomaterials 2006, 27, 4963–4974, doi:10.1016/j.biomaterials.2006.04.045.
[2]  Lescure, F.; Seguin, C.; Breton, P.; Bourrinet, P.; Roy, D.; Couvreur, P. Preparation and characterization of novel poly(methylidene malonate 2.1.2.)-made nanoparticles. Pharm. Res. 1994, 11, 1270–1277, doi:10.1023/A:1018986226557.
[3]  Eugenin, E.A.; Clements, J.E.; Zink, M.C.; Berman, J.W. Human immunodeficiency virus infection of human astrocytes disrupts blood–brain barrier integrity by a gap junction-dependent mechanism. J. Neurosci. 2011, 31, 9456–9465.
[4]  Miller, E. Multiple sclerosis. Adv. Exp. Med. Biol. 2012, 724, 222–238, doi:10.1007/978-1-4614-0653-2_17.
[5]  Zhong, J.; Chan, A.; Morad, L.; Kornblum, H.I.; Guoping, Fan.; Carmichael, S.T. Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehab. Neural Re. 2010, 24, 636–644, doi:10.1177/1545968310361958.
[6]  Barker, R.A.; Dunnett, S.B.; Faissner, A.; Fawcett, J.W. The time course of loss of dopaminergic neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum. Exp. Neurol. 1996, 141, 79–93, doi:10.1006/exnr.1996.0141.
[7]  Bjugstad, K.B.; Teng, Y.D.; Redmond, D.E.; Elsworth, J.D.; Roth, R.H.; Cornelius, S.K.; Snyder, E.Y.; Sladek, J.R. Human neural stem cells migrate along the nigrostriatal pathway in a primate model of parkinson’s disease. Exp. Neurol. 2008, 211, 362–369, doi:10.1016/j.expneurol.2008.01.025.
[8]  Meyer, M.; Widmer, H.R.; Wagner, B.; Guzman, R.; Evtouchenko, L.; Seiler, R.W.; Spenger, C. Comparison of mesencephalic free-floating tissue culture grafts and cell suspension grafts in the 6-hydroxydopamine-lesioned rat. Exp. Brain Res. 1998, 119, 345–355, doi:10.1007/s002210050350.
[9]  Redmond, D.E.; Weiss, S.; Elsworth, J.D.; Roth, R.H.; Wakeman, D.R.; Bjugstad, K.B.; Collier, T.J.; Blanchard, B.C.; Teng, Y.D.; Synder, E.Y.; et al. Cellular repair in the parkinsonian nonhuman primate brain. Rejuv. Res. 2010, 13, 188–194.
[10]  Yu, D.; Neeley, W.L.; Pritchard, C.D.; Slotkin, J.R.; Woodard, E.J.; Langer, R.; Teng, Y.D. Blockade of peroxynitrite-induced neural stem cell death in the acutely injured spinal cord by drug-releasing polymer. Stem Cells 2009, 27, 1212–1222.
[11]  Kelly, S.; Bliss, T.M.; Shah, A.K.; Sun, G.H.; Ma, M.; Foo, W.C.; Masel, J.; Yenari, M.A.; Weissman, I.L.; Uchida, N.; et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc. Natl. Acad. Sci. USA 2004, 101, 11839–11844.
[12]  Jing, M.; Shingo, T.; Yasuhara, T.; Kondo, A.; Morimoto, T.; Wang, F.; Baba, T.; Yuan, W.J.; Tajiri, N.; Uozumi, T.; et al. The combined therapy of intrahippocampal transplantation of adult neural stem cells and intraventricular erythropoietin-infusion ameliorates spontaneous recurrent seizures by suppression of abnormal mossy fiber sprouting. Brain Res. 2009, 1295, 203–217, doi:10.1016/j.brainres.2009.07.079.
[13]  Kazma, M.; Izrael, M.; Revel, M.; Chebath, J.; Yanai, J. Survival, differentiation, and reversal of heroin neurobehavioral teratogenicity in mice by transplanted neural stem cells derived from embryonic stem cells. J. Neurosci. Res. 2010, 88, 315–323, doi:10.1002/jnr.22193.
[14]  Rachubinski, A.L.; Crowley, S.K.; Sladek, J.R., Jr.; Maclean, K.N.; Bjugstad, K.B. Effects of neonatal neural progenitor cell implantation on adult neuroanatomy and cognition in the ts65dn model of down syndrome. PLoS One 2012, 7, e36082.
[15]  Roy, N.S.; Cleren, C.; Singh, S.K.; Yang, L.; Beal, M.F.; Goldman, S.A. Functional engraftment of human es cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med. 2006, 12, 1259–1268, doi:10.1038/nm1495.
[16]  Clarkson, E.D.; Zawada, W.M.; Adams, F.S.; Bell, K.P.; Freed, C.R. Strands of embryonic mesencephalic tissue show greater dopamine neuron survival and better behavioral improvement than cell suspensions after transplantation in parkinsonian rats. Brain Res. 1998, 806, 60–68, doi:10.1016/S0006-8993(98)00717-3.
[17]  Fawcett, J.W.; Barker, R.A.; Dunnett, S.B. Dopaminergic neuronal survival and the effects of bfgf in explant, three dimensional and monolayer cultures of embryonic rat ventral mesencephalon. Exp. Brain Res. 1995, 106, 275–282.
[18]  Heim, R.C.; Willingham, G.; Freed, W.J. A comparison of solid intraventricular and dissociated intraparenchymal fetal substantia nigra grafts in a rat model of parkinson’s disease: Impaired graft survival is associated with high baseline rotational behavior. Exp. Neurol. 1993, 122, 5–15, doi:10.1006/exnr.1993.1102.
[19]  Watts, C.; Brasted, P.J.; Dunnett, S.B. The morphology, integration, and functional efficacy of striatal grafts differ between cell suspensions and tissue pieces. Cell Transplant. 2000, 9, 395–407.
[20]  Uemura, M.; Refaat, M.M.; Shinoyama, M.; Hayashi, H.; Hashimoto, N.; Takahashi, J. Matrigel supports survival and neuronal differentiation of grafted embryonic stem cell-derived neural precursor cells. J. Neurosci. Res. 2010, 88, 542–551.
[21]  Tate, C.C.; Shear, D.A.; Tate, M.C.; Archer, D.R.; Stein, D.G.; LaPlaca, M.C. Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J. Tissue Eng. Regen. Med. 2009, 3, 208–217.
[22]  Potter, W.; Kalil, R.E.; Kao, W.J. Biomimetic material systems for neural progenitor cell-based therapy. Front. Biosci. 2008, 13, 806–821.
[23]  Jin, K.L.; Mao, X.O.; Xie, L.; Galvan, V.; Lai, B.; Wang, Y.M.; Gorostiza, O.; Wang, X.M.; Greenberg, D.A. Transplantation of human neural precursor cells in matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J. Cereb. Blood Flow Met. 2010, 30, 534–544, doi:10.1038/jcbfm.2009.219.
[24]  Cooke, M.J.; Vulic, K.; Shoichet, M.S. Design of biomaterials to enhance stem cell survival when transplanted into the damaged central nervous system. Soft Matter. 2010, 6, 4988–4998, doi:10.1039/c0sm00448k.
[25]  Bible, E.; Chau, D.Y.S.; Alexander, M.R.; Price, J.; Shakesheff, K.M.; Modo, M. The support of neural stem cells transplanted into stroke-induced brain cavities by plga particles. Biomaterials 2009, 30, 2985–2994.
[26]  Anseth, K.S.; Bowman, C.N.; Brannon-Peppas, L. Mechanical properties of hydrogels and their experimental determination. Biomaterials 1996, 17, 1647–1657.
[27]  Aurand, E.R.; Lampe, K.J.; Bjugstad, K.B. Defining and designing polymers and hydrogels for neural tissue engineering. Neurosci. Res. 2012, 72, 199–213, doi:10.1016/j.neures.2011.12.005.
[28]  Burdick, J.A.; Chung, C.; Jia, X.Q.; Randolph, M.A.; Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 2005, 6, 386–391, doi:10.1021/bm049508a.
[29]  Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351.
[30]  Hejcl, A.; Lesny, P.; Pradny, M.; Michalek, J.; Jendelova, P.; Stulik, J.; Sykova, E. Biocompatible hydrogels in spinal cord injury repair. Physiol. Res. 2008, 57, S121–S132.
[31]  Kloxin, A.M.; Kloxin, C.J.; Bowman, C.N.; Anseth, K.S. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 2010, 22, 3484–3494.
[32]  Nguyen, K.T.; West, J.L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 2002, 23, 4307–4314, doi:10.1016/S0142-9612(02)00175-8.
[33]  Pettikiriarachchi, J.T.S.; Parish, C.L.; Shoichet, M.S.; Forsythe, J.S.; Nisbet, D.R. Biomaterials for brain tissue engineering. Aust. J. Chem. 2010, 63, 1143–1154.
[34]  Seidlits, S.K.; Khaing, Z.Z.; Petersen, R.R.; Nickels, J.D.; Vanscoy, J.E.; Shear, J.B.; Schmidt, C.E. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials 2010, 31, 3930–3940, doi:10.1016/j.biomaterials.2010.01.125.
[35]  Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in regenerative medicine. Adv. Mater. 2009, 21, 3307–3329.
[36]  Tian, W.M.; Hou, S.P.; Ma, J.; Zhang, C.L.; Xu, Q.Y.; Lee, I.S.; Li, H.D.; Spector, M.; Cui, F.Z. Hyaluronic acid-poly-d-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng. 2005, 11, 513–525, doi:10.1089/ten.2005.11.513.
[37]  Vanderhooft, J.L.; Alcoutlabi, M.; Magda, J.J.; Prestwich, G.D. Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering. Macromol. Biosci. 2009, 9, 20–28.
[38]  Compston, A.; Zajicek, J.; Sussman, J.O.N.; Webb, A.; Hall, G.; Muir, D.; Shaw, C.; Wood, A.; Scolding, N. Review: Glial lineages and myelination in the central nervous system. J. Anat. 1997, 190, 161–200.
[39]  Laird, M.D.; Vender, J.R.; Dhandapani, K.M. Opposing roles for reactive astrocytes following traumatic brain injury. Neurosignals 2008, 16, 154–164.
[40]  Aloisi, F. Immune function of microglia. Glia 2001, 36, 165–179, doi:10.1002/glia.1106.
[41]  Hanisch, U.-K.; Kettenmann, H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 2007, 10, 1387–1394.
[42]  Fitch, M.T.; Silver, J. Cns injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp. Neurol. 2008, 209, 294–301, doi:10.1016/j.expneurol.2007.05.014.
[43]  Baron, W.; Hoekstra, D. On the biogenesis of myelin membranes: Sorting, trafficking and cell polarity. FEBS Lett. 2010, 584, 1760–1770.
[44]  Emery, B. Regulation of oligodendrocyte differentiation and myelination. Science 2010, 330, 779–782, doi:10.1126/science.1190927.
[45]  Boespflug-Tanguy, O.; Labauge, P.; Fogli, A.; Vaurs-Barriere, C. Genes involved in leukodystrophies: A glance at glial functions. Curr. Neurol. Neurosci. 2008, 8, 217–229, doi:10.1007/s11910-008-0034-x.
[46]  Kassmann, C.M.; Nave, K.A. Oligodendroglial impact on axonal function and survival—a hypothesis. Curr. Opin. Neurol. 2008, 21, 235–241.
[47]  Pivneva, T.A. Mechanisms underlying the process of demyelination in multiple sclerosis. Neurophysiology 2009, 41, 365–373.
[48]  Poser, C.M. Dysmyelination revisited. Arch Neurol. 1978, 35, 401–408, doi:10.1001/archneur.1978.00500310003001.
[49]  Bazan, E.; Alonso, F.J.M.; Redondo, C.; Lopez-Toledano, M.A.; Alfaro, J.M.; Reimers, D.; Herranz, A.S.; Paino, C.L.; Serrano, A.B.; Cobacho, N.; et al. In vitro and in vivo characterization of neural stem cells. Histol. Histopathol. 2004, 19, 1261–1275.
[50]  Cayre, M.; Canoll, P.; Goldman, J.E. Cell migration in the normal and pathological postnatal mammalian brain. Prog. Neurobiol. 2009, 88, 41–63, doi:10.1016/j.pneurobio.2009.02.001.
[51]  Gage, F.H. Mammalian neural stem cells. Science 2000, 287, 1433–1438.
[52]  Gurgo, R.D.; Bedi, K.S.; Nurcombe, V. Current concepts in central nervous system regeneration. J. Clin. Neurosci. 2002, 9, 613–617, doi:10.1054/jocn.2002.1080.
[53]  Rietze, R.L.; Reynolds, B.A. Neural stem cell isolation and characterization. In Adult Stem Cells; Klimanskaya, I., Lanza, R.P., Eds.; Elsevier Academic Press: Amsterdam, NY, USA, 2006.
[54]  Preston, E.; Webster, J.; Small, D. Characteristics of sustained blood-brain barrier opening and tissue injury in a model for focal trauma in the rat. J. Neurotraum. 2001, 18, 83–92, doi:10.1089/089771501750055794.
[55]  Bjugstad, K.B.; Lampe, K.; Kern, D.S.; Mahoney, M. Biocompatibility of poly(ethylene glycol)-based hydrogels in the brain: An analysis of the glial response across space and time. J. Biomed. Mater. Res. A 2010, 95A, 79–91.
[56]  Ridet, J.L.; Privat, A.; Malhotra, S.K.; Gage, F.H. Reactive astrocytes: Cellular and molecular cues to biological function. Trends Neurosci. 1997, 20, 570–577, doi:10.1016/S0166-2236(97)01139-9.
[57]  Hamill, C.; Goldshmidt, A.; Nicole, O.; McKeon, R.; Brat, D.; Traynelis, S. Glial reactivity after damage: Implications for scar formation and neuronal recovery. Clin. Neur. 2005, 52, 29–44.
[58]  Batchelor, P.E.; Liberatore, G.T.; Wong, J.Y.F.; Porritt, M.J.; Frerichs, F.; Donnan, G.A.; Howells, D.W. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J. Neurosci. 1999, 19, 1708–1716.
[59]  Leung, B.K.; Biran, R.; Underwood, C.J.; Tresco, P.A. Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry. Biomaterials 2008, 29, 3289–3297.
[60]  Fournier, E.; Passirani, C.; Montero-Menei, C.N.; Benoit, J.P. Biocompatibility of implantable synthetic polymeric drug carriers: Focus on brain biocompatibility. Biomaterials 2003, 24, 3311–3331, doi:10.1016/S0142-9612(03)00161-3.
[61]  Yang, C.-Y.; Song, B.; Ao, Y.; Nowak, A.P.; Abelowitz, R.B.; Korsak, R.A.; Havton, L.A.; Deming, T.J.; Sofroniew, M.V. Biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system. Biomaterials 2009, 30, 2881–2898.
[62]  Davies, J.; Huang, C.; Proschel, C.; Noble, M.; Mayer-Proschel, M.; Davies, S. Astrocytes derived from glial-restricted precursors promote spinal cord repair. J. Biol. 2006, 5, doi:10.1186/jbiol35.
[63]  Hirsch, S.; Bahr, M. Growth promoting and inhibitory effects of glial cells in the mammalian nervous system. In The Functional Roles of Glial Cells in Health and Disease—Dialogue Between Glia and Neurons; Matsas, R., Tsacopoulos, M., Eds.; Kluwer Academic/Plenum Publ: New York, NY, USA, 1999; Volume 468, pp. 199–205.
[64]  Haberler, C.; Alesch, F.; Mazal, P.R.; Pilz, P.; Jellinger, K.; Pinter, M.M.; Hainfellner, J.A.; Budka, H. No tissue damage by chronic deep brain stimulation in parkinson’s disease. Ann. Neurol. 2000, 48, 372–376, doi:10.1002/1531-8249(200009)48:3<372::AID-ANA12>3.0.CO;2-0.
[65]  Bellail, A.C.; Hunter, S.B.; Brat, D.J.; Tan, C.; Van Meir, E.G. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int. J. Biochem. Cell B. 2004, 36, 1046–1069.
[66]  McKeon, R.; Schreiber, R.; Rudge, J.; Silver, J. Reduction of neurite outgrowth in a model of glial scarring following cns injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 1991, 11, 3398–3411.
[67]  Gris, P.; Tighe, A.; Levin, D.; Sharma, R.; Brown, A. Transcriptional regulation of scar gene expression in primary astrocytes. Glia 2007, 55, 1145–1155.
[68]  Bonneh-Barkay, D.; Wiley, C.A. Brain extracellular matrix in neurodegeneration. Brain Pathol. 2009, 19, 573–585.
[69]  Hou, S.; Xu, Q.; Tian, W.; Cui, F.; Cai, Q.; Ma, J.; Lee, I.-S. The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. J. Neurosci. Meth. 2005, 148, 60–70.
[70]  Rauch, U. Extracellular matrix components associated with remodeling processes in brain. Cell. Mol. Life Sci. 2004, 61, 2031–2045.
[71]  Ruoslahti, E. Brain extracellular matrix. Glycobiology 1996, 6, 489–492.
[72]  Tonge, D.A.; de Burgh, H.T.; Docherty, R.; Humphries, M.J.; Craig, S.E.; Pizzey, J. Fibronectin supports neurite outgrowth and axonal regeneration of adult brain neurons in vitro. Brain Res. 2012, 1453, 8–16.
[73]  Davies, J.; Proschel, C.; Zhang, N.; Noble, M.; Mayer-Proschel, M.; Davies, S. Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury. J. Biol. 2008, 7, doi:10.1186/jbiol85.
[74]  Bjugstad, K.B.; Redmond, D.E., Jr.; Lampe, K.J.; Kern, D.S.; Sladek, J.R., Jr.; Mahoney, M.J. Biocompatibility of peg-based hydrogels in primate brain. Cell Transplant. 2008, 17, 409–415.
[75]  Lampe, K.J.; Kern, D.S.; Mahoney, M.J.; Bjugstad, K.B. The administration of bdnf and gdnf to the brain via plga microparticles patterned within a degradable peg-based hydrogel: Protein distribution and the glial response. J. Biomed. Mater. Res. A 2011, 96, 595–607.
[76]  Nagamoto-Combs, K.; McNeal, D.W.; Morecraft, R.J.; Combs, C.K. Prolonged microgliosis in the rhesus monkey central nervous system after traumatic brain injury. J. Neurotraum. 2007, 24, 1719–1742.
[77]  Chen, X.-H.; Johnson, V.E.; Uryu, K.; Trojanowski, J.Q.; Smith, D.H. A lack of amyloid β plaques despite persistent accumulation of amyloid β in axons of long-term survivors of traumatic brain injury. Brain Pathol. 2009, 19, 214–223.
[78]  Gentleman, S.M.; Leclercq, P.D.; Moyes, L.; Graham, D.I.; Smith, C.; Griffin, W.S.T.; Nicoll, J.A.R. Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci. Int. 2004, 146, 97–104.
[79]  Morganti-Kossmann, M.C.P.; Rancan, M.M.D.; Stahel, P.F.M.D.; Kossmann, T.M.D. Inflammatory response in acute traumatic brain injury: A double-edged sword. Curr. Opin. Crit. Care 2002, 8, 101–105.
[80]  Enderle, J.D.; Blanchard, S.M.; Bronzino, J.D. Introduction to Biomedical Engineering, 2nd ed.; Elsevier Academic Press: San Francisco, CA, USA, 2005; pp. 272–273, 287–296.
[81]  Gumera, C.; Rauck, B.; Wang, Y.D. Materials for central nervous system regeneration: Bioactive cues. J. Mater. Chem. 2011, 21, 7033–7051.
[82]  Magnusson, J.P.; Saeed, A.O.; Fernandez-Trillo, F.; Alexander, C. Synthetic polymers for biopharmaceutical delivery. Polym. Chem. 2011, 2, 48–59.
[83]  Peppas, N.A.; Hilt, J.Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360.
[84]  Place, E.S.; George, J.H.; Williams, C.K.; Stevens, M.M. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 2009, 38, 1139–1151.
[85]  Duconseille, E.; Woerly, S.; Kelche, C.; Will, B.; Cassel, J.-C. Polymeric hydrogels placed into a fimbria-fornix lesion cavity promote fiber (re)growth: A morphological study in the rat. Restor. Neurol. Neuros. 1998, 13, 193–203.
[86]  Prestwich, G.D. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J. Control. Release 2011, 155, 193–199.
[87]  Shu, X.Z.; Ahmad, S.; Liu, Y.C.; Prestwich, G.D. Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J. Biomed. Mater. Res. A 2006, 79, 902–912.
[88]  Mithieux, S.M.; Tu, Y.; Korkmaz, E.; Braet, F.; Weiss, A.S. In situ polymerization of tropoelastin in the absence of chemical cross-linking. Biomaterials 2009, 30, 431–435, doi:10.1016/j.biomaterials.2008.10.018.
[89]  Nguyen, M.K.; Lee, D.S. Injectable biodegradable hydrogels. Macromol. Biosci. 2010, 10, 563–579.
[90]  Hedberg, E.L.; Kroese-Deutman, H.C.; Shih, C.K.; Crowther, R.S.; Carney, D.H.; Mikos, A.G.; Jansen, J.A. In vivo degradation of porous poly(propylene fumarate)/poly(dl-lactic-co-glycolic acid) composite scaffolds. Biomaterials 2005, 26, 4616–4623, doi:10.1016/j.biomaterials.2004.11.039.
[91]  Williams, D.F. Tissue-biomaterial interactions. J. Mater. Sci. 1987, 22, 3421–3445.
[92]  Lampe, K.J.; Namba, R.M.; Silverman, T.R.; Bjugstad, K.B.; Mahoney, M.J. Impact of lactic acid on cell proliferation and free radical-induced cell death in monolayer cultures of neural precursor cells. Biotechnol. Bioeng. 2009, 103, 1214–1223.
[93]  Bowman, C.N.; Kloxin, C.J. Toward an enhanced understanding and implementation of photopolymerization reactions. Aiche J. 2008, 54, 2775–2795.
[94]  Lampe, K.J.; Bjugstad, K.B.; Mahoney, M.J. Impact of degradable macromer content in a poly(ethylene glycol) hydrogel on neural cell metabolic activity, redox state, proliferation, and differentiation. Tissue Eng. Pt. A 2010, 16, 1857–1866, doi:10.1089/ten.tea.2009.0509.
[95]  Williams, C.G.; Malik, A.N.; Kim, T.K.; Manson, P.N.; Elisseeff, J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005, 26, 1211–1218.
[96]  Horowitz, M.P.; Milanese, C.; Di Maio, R.; Hu, X.P.; Montero, L.M.; Sanders, L.H.; Tapias, V.; Sepe, S.; van Cappellen, W.A.; Burton, E.A.; et al. Single-cell redox imaging demonstrates a distinctive response of dopaminergic neurons to oxidative insults. Antioxid. Redox Sign. 2011, 15, 855–871.
[97]  Chiu, Y.-L.; Chen, S.-C.; Su, C.-J.; Hsiao, C.-W.; Chen, Y.-M.; Chen, H.-L.; Sung, H.-W. Ph-triggered injectable hydrogels prepared from aqueous n-palmitoyl chitosan: In vitro characteristics and in vivo biocompatibility. Biomaterials 2009, 30, 4877–4888, doi:10.1016/j.biomaterials.2009.05.052.
[98]  Jeong, B.; Bae, Y.H.; Kim, S.W. Thermoreversible gelation of peg-plga-peg triblock copolymer aqueous solutions. Macromolecules 1999, 32, 7064–7069.
[99]  Jeong, B.; Bae, Y.H.; Kim, S.W. In situ gelation of peg-plga-peg triblock copolymer aqueous solutions and degradation thereof. J. Biomed. Mater. Res. 2000, 50, 171–177, doi:10.1002/(SICI)1097-4636(200005)50:2<171::AID-JBM11>3.0.CO;2-F.
[100]  Ma, Z.; Nelson, D.M.; Hong, Y.; Wagner, W.R. Thermally responsive injectable hydrogel incorporating methacrylate-polylactide for hydrolytic lability. Biomacromolecules 2010, 11, 1873–1881.
[101]  Ruel-Gariepy, E.; Leroux, J.C. In situ—forming hydrogels—review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 2004, 58, 409–426, doi:10.1016/j.ejpb.2004.03.019.
[102]  Conova, L.; Vernengo, J.; Jin, Y.; Himes, B.T.; Neuhuber, B.; Fischer, I.; Lowman, A. A pilot study of poly(n-isopropylacrylamide)-g-polyethylene glycol and poly(n-isopropylacrylamide)-g-methylcellulose branched copolymers as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. J. Neurosurg. Spine 2011, 15, 594–604.
[103]  Burkersroda, F.V.; Schedl, L.; G?pferich, A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002, 23, 4221–4231.
[104]  DuBose, J.W.; Cutshall, C.; Metters, A.T. Controlled release of tethered molecules via engineered hydrogel degradation: Model development and validation. J. Biomed. Mater. Res. A 2005, 74, 104–116.
[105]  G?pferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17, 103–114.
[106]  Martens, P.J.; Bryant, S.J.; Anseth, K.S. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules 2003, 4, 283–292.
[107]  Patterson, J.; Hubbell, J.A. Enhanced proteolytic degradation of molecularly engineered peg hydrogels in response to mmp-1 and mmp-2. Biomaterials 2010, 31, 7836–7845.
[108]  Rice, M.A.; Sanchez-Adams, J.; Anseth, K.S. Exogenously triggered, enzymatic degradation of photopolymerized hydrogels with polycaprolactone subunits:? Experimental observation and modeling of mass loss behavior. Biomacromolecules 2006, 7, 1968–1975.
[109]  West, J.L.; Hubbell, J.A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 1998, 32, 241–244.
[110]  Deshmukh, M.; Singh, Y.; Gunaseelan, S.; Gao, D.; Stein, S.; Sinko, P.J. Biodegradable poly(ethylene glycol) hydrogels based on a self-elimination degradation mechanism. Biomaterials 2010, 31, 6675–6684.
[111]  De Souza, S.W.; Dobbing, J. Cerebral edema in developing brain. I. Normal water and cation content in developing rat brain and postmortem changes. Exp. Neurol. 1971, 32, 431–438, doi:10.1016/0014-4886(71)90009-4.
[112]  Grasso, G.; Alafaci, C.; Passalacqua, M.; Morabito, A.; Buemi, M.; Salpietro, F.M.; Tomasello, F. Assessment of human brain water content by cerebral bioelectrical impedance analysis: A new technique and its application to cerebral pathological conditions. Neurosurgery 2002, 50, 1064–1072.
[113]  Clarke, N.E.; Mosher, R.E. The water and electrolyte content of the human heart in congestive heart failure with and without digitalization. Circulation 1952, 5, 907–914.
[114]  O'Dochartaigh, C.S.; Kelly, B.; Riley, M.S.; Nicholls, D.P. Lung water content is not increased in chronic cardiac failure. Heart 2005, 91, 1473–1474.
[115]  Anseth, K.S.; Metters, A.T.; Bryant, S.J.; Martens, P.J.; Elisseeff, J.H.; Bowman, C.N. In situ forming degradable networks and their application in tissue engineering and drug delivery. J. Control. Release 2002, 78, 199–209, doi:10.1016/S0168-3659(01)00500-4.
[116]  Hahn, S.K.; Park, J.K.; Tomimatsu, T.; Shimoboji, T. Synthesis and degradation test of hyaluronic acid hydrogels. Int. J. Biol. Macromol. 2007, 40, 374–380.
[117]  Oh, E.J.; Kang, S.-W.; Kim, B.-S.; Jiang, G.; Cho, I.H.; Hahn, S.K. Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation. J. Biomed. Mater. Res. A 2008, 86, 685–693.
[118]  Al’Qteishat, A.; Gaffney, J.; Krupinski, J.; Rubio, F.; West, D.; Kumar, S.; Kumar, P.; Mitsios, N.; Slevin, M. Changes in hyaluronan production and metabolism following ischaemic stroke in man. Brain 2006, 129, 2158–2176.
[119]  Edell, D.J.; Toi, V.V.; McNeil, V.M.; Clark, L.D. Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans. Biomed. Eng. 1992, 39, 635–643.
[120]  Turner, J.N.; Shain, W.; Szarowski, D.H.; Andersen, M.; Martins, S.; Isaacson, M.; Craighead, H. Cerebral astrocyte response to micromachined silicon implants. Exp. Neurol. 1999, 156, 33–49.
[121]  Szarowski, D.H.; Andersen, M.D.; Retterer, S.; Spence, A.J.; Isaacson, M.; Craighead, H.G.; Turner, J.N.; Shain, W. Brain responses to micro-machined silicon devices. Brain Res. 2003, 983, 23–35.
[122]  Biran, R.; Martin, D.C.; Tresco, P.A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 2005, 195, 115–126.
[123]  Hsu, J.Y.; Bourguignon, L.Y.; Adams, C.M.; Peyrollier, K.; Zhang, H.; Fandel, T.; Cun, C.L.; Werb, Z.; Noble-Haeusslein, L.J. Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord. J. Neurosci. 2008, 28, 13467–13477.
[124]  Khaing, Z.Z.; Milman, B.D.; Vanscoy, J.E.; Seidlits, S.K.; Grill, R.J.; Schmidt, C.E. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J. Neural Eng. 2011, 8, doi:10.1088/1741-2560/8/4/046033.
[125]  Miller, R.H. Building bridges with astrocytes for spinal cord repair. J. Biol. 2006, 5, doi:10.1186/jbiol40.
[126]  Chung, C.; Beecham, M.; Mauck, R.L.; Burdick, J.A. The influence of degradation characteristics of hyaluronic acid hydrogels on in vitro neocartilage formation by mesenchymal stem cells. Biomaterials 2009, 30, 4287–4296, doi:10.1016/j.biomaterials.2009.04.040.
[127]  Metters, A.T.; Anseth, K.S.; Bowman, C.N. Fundamental studies of a novel, biodegradable peg-b-pla hydrogel. Polymer 2000, 41, 3993–4004.
[128]  Zhou, Y.; Ma, G.; Shi, S.; Yang, D.; Nie, J. Photopolymerized water-soluble chitosan-based hydrogel as potential use in tissue engineering. Int. J. Biol. Macromol. 2011, 48, 408–413.
[129]  Tysseling-Mattiace, V.M.; Sahni, V.; Niece, K.L.; Birch, D.; Czeisler, C.; Fehlings, M.G.; Stupp, S.I.; Kessler, J.A. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 2008, 28, 3814–3823.
[130]  Bryant, S.J.; Nicodemus, G.D.; Villanueva, I. Designing 3d photopolymer hydrogels to regulate biomechanical cues and tissue growth for cartilage tissue engineering. Pharm. Res. 2008, 25, 2379–2386.
[131]  Burdick, J.A.; Anseth, K.S. Photoencapsulation of osteoblasts in injectable rgd-modified peg hydrogels for bone tissue engineering. Biomaterials 2002, 23, 4315–4323.
[132]  Dadsetan, M.; Knight, A.M.; Lu, L.; Windebank, A.J.; Yaszemski, M.J. Stimulation of neurite outgrowth using positively charged hydrogels. Biomaterials 2009, 30, 3874–3881.
[133]  Dadsetan, M.; Pumberger, M.; Casper, M.E.; Shogren, K.; Giuliani, M.; Ruesink, T.; Hefferan, T.E.; Currier, B.L.; Yaszemski, M.J. The effects of fixed electrical charge on chondrocyte behavior. Acta Biomater. 2011, 7, 2080–2090.
[134]  Elbert, D.L.; Hubbell, J.A. Surface treatments of polymers for biocompatibility. Annu. Rev. Mater. Sci. 1996, 26, 365–394, doi:10.1146/annurev.ms.26.080196.002053.
[135]  Hersel, U.; Dahmen, C.; Kessler, H. Rgd modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003, 24, 4385–4415.
[136]  Mann, B.K.; Gobin, A.S.; Tsai, A.T.; Schmedlen, R.H.; West, J.L. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: Synthetic ecm analogs for tissue engineering. Biomaterials 2001, 22, 3045–3051, doi:10.1016/S0142-9612(01)00051-5.
[137]  Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, 4639–4656.
[138]  Gunn, J.W.; Turner, S.D.; Mann, B.K. Adhesive and mechanical properties of hydrogels influence neurite extension. J. Biomed. Mater. Res. A 2005, 72, 91–97.
[139]  Schense, J.C.; Hubbell, J.A. Three-dimensional migration of neurites is mediated by adhesion site density and affinity. J. Biol. Chem. 2000, 275, 6813–6818, doi:10.1074/jbc.275.10.6813.
[140]  Shu, X.Z.; Ghosh, K.; Liu, Y.; Palumbo, F.S.; Luo, Y.; Clark, R.A.; Prestwich, G.D. Attachment and spreading of fibroblasts on an rgd peptide-modified injectable hyaluronan hydrogel. J. Biomed. Mater. Res. A 2004, 68, 365–375.
[141]  Serban, M.A.; Prestwich, G.D. Modular extracellular matrices: Solutions for the puzzle. Methods 2008, 45, 93–98, doi:10.1016/j.ymeth.2008.01.010.
[142]  Georges, P.C.; Miller, W.J.; Meaney, D.F.; Sawyer, E.S.; Janmey, P.A. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 2006, 90, 3012–3018.
[143]  Hou, S.; Tian, W.; Xu, Q.; Cui, F.; Zhang, J.; Lu, Q.; Zhao, C. The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co-cultured with hyaluronic acid hydrogels modified with nogo-66 receptor antagonist in vitro. Neuroscience 2006, 137, 519–529, doi:10.1016/j.neuroscience.2005.09.029.
[144]  Hynd, M.R.; Turner, J.N.; Shain, W. Applications of hydrogels for neural cell engineering. J. Biomat. Sci. Polym. E. 2007, 18, 1223–1244.
[145]  Pan, L.; Ren, Y.; Cui, F.; Xu, Q. Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. J. Neurosci. Res. 2009, 87, 3207–3220.
[146]  Burdick, J.A.; Ward, M.; Liang, E.; Young, M.J.; Langer, R. Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels. Biomaterials 2006, 27, 452–459, doi:10.1016/j.biomaterials.2005.06.034.
[147]  Johnson, P.J.; Tatara, A.; Shiu, A.; Sakiyama-Elbert, S.E. Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of sci. Cell Transplant. 2010, 19, 89–101.
[148]  Lee, Y.-B.; Polio, S.; Lee, W.; Dai, G.; Menon, L.; Carroll, R.S.; Yoo, S.-S. Bio-printing of collagen and vegf-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol. 2010, 223, 645–652, doi:10.1016/j.expneurol.2010.02.014.
[149]  Park, J.; Lim, E.; Back, S.; Na, H.; Park, Y.; Sun, K. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. J. Biomed. Mater. Res. A 2010, 93, 1091–1099.
[150]  Saik, J.E.; Gould, D.J.; Watkins, E.M.; Dickinson, M.E.; West, J.L. Covalently immobilized platelet-derived growth factor-bb promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater. 2011, 7, 133–143.
[151]  Tzeng, S.Y.; Lavik, E.B. Photopolymerizable nanoarray hydrogels deliver cntf and promote differentiation of neural stem cells. Soft Matter 2010, 6, 2208–2215, doi:10.1039/b923544b.
[152]  Willerth, S.M.; Faxel, T.E.; Gottlieb, D.I.; Sakiyama-Elbert, S.E. The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells 2007, 25, 2235–2244.
[153]  Willerth, S.M.; Rader, A.; Sakiyama-Elbert, S.E. The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds. Stem Cell Res. 2008, 1, 205–218, doi:10.1016/j.scr.2008.05.006.
[154]  Wood, M.D.; MacEwan, M.R.; French, A.R.; Moore, A.M.; Hunter, D.A.; Mackinnon, S.E.; Moran, D.W.; Borschel, G.H.; Sakiyama-Elbert, S.E. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration. Biotechnol. Bioeng. 2010, 106, 970–979.
[155]  Norrby, K. In vivo models of angiogenesis. J. Cell. Mol. Med. 2006, 10, 588–612, doi:10.1111/j.1582-4934.2006.tb00423.x.
[156]  Lu, D.; Mahmood, A.; Qu, C.; Hong, X.; Kaplan, D.; Chopp, M. Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery 2007, 61, 596–602.
[157]  Wu, Y.; Joseph, S.; Aluru, N.R. Effect of cross-linking on the diffusion of water, ions, and small molecules in hydrogels. J. Phys. Chem. B 2009, 113, 3512–3520, doi:10.1021/jp808145x.
[158]  Stachowiak, A.N.; Bershteyn, A.; Tzatzalos, E.; Irvine, D.J. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv. Mater. 2005, 17, 399–403.
[159]  Guan, J.; Fujimoto, K.L.; Sacks, M.S.; Wagner, W.R. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 2005, 26, 3961–3971.
[160]  Gerecht, S.; Townsend, S.A.; Pressler, H.; Zhu, H.; Nijst, C.L.E.; Bruggeman, J.P.; Nichol, J.W.; Langer, R. A porous photocurable elastomer for cell encapsulation and culture. Biomaterials 2007, 28, 4826–4835, doi:10.1016/j.biomaterials.2007.07.039.
[161]  Ford, M.C.; Bertram, J.P.; Hynes, S.R.; Michaud, M.; Li, Q.; Young, M.; Segal, S.S.; Madri, J.A.; Lavik, E.B. A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks invivo. Proc. Natl. Acad. Sci. USA 2006, 103, 2512–2517.
[162]  Namba, R.M.; Cole, A.A.; Bjugstad, K.B.; Mahoney, M.J. Development of porous peg hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension. Acta Biomater. 2009, 5, 1884–1897, doi:10.1016/j.actbio.2009.01.036.
[163]  Druecke, D.; Langer, S.; Lamme, E.; Pieper, J.; Ugarkovic, M.; Steinau, H.U.; Homann, H.H. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: Long-term investigations using intravital fluorescent microscopy. J. Biomed. Mater. Res. A 2004, 68, 10–18.
[164]  Keskar, V.; Gandhi, M.; Gemeinhart, E.J.; Gemeinhart, R.A. Initial evaluation of vascular ingrowth into superporous hydrogels. J. Tissue Eng. Regen. M. 2009, 3, 486–490.
[165]  Keskar, V.; Marion, N.W.; Mao, J.J.; Gemeinhart, R.A. In vitro evaluation of macroporous hydrogels to facilitate stem cell infiltration, growth, and mineralization. Tissue Eng. Part A 2009, 15, 1695–1707, doi:10.1089/ten.tea.2008.0238.
[166]  Folkman, J.; Kalluri, R. Tumor angiogenesis. In Holland-Frei Cancer Medicine; Kufe, D.W., Pollock, R.E., Weichselbaum, R.R., Bast, J., Robert, C., Gansler, T.S., Holland, J.F., Frei, E., III, Eds.; BC Decker: Hamilton, ON, Cannda, 2003; pp. 161–194.
[167]  Danielsson, P.; Dahlin, L.; Povlsen, B. Tubulization increases axonal outgrowth of rat sciatic nerve after crush injury. Exp. Neurol. 1996, 139, 238–243, doi:10.1006/exnr.1996.0097.
[168]  Xie, J.W.; MacEwan, M.R.; Willerth, S.M.; Li, X.R.; Moran, D.W.; Sakiyama-Elbert, S.E.; Xia, Y.N. Conductive core-sheath nanofibers and their potential application in neural tissue engineering. Adv. Funct. Mater. 2009, 19, 2312–2318.
[169]  Langone, F.; Lora, S.; Veronese, F.M.; Caliceti, P.; Parnigotto, P.P.; Valenti, F.; Palma, G. Peripheral-nerve repair using a poly(organo)phosphazene tubular prosthesis. Biomaterials 1995, 16, 347–353, doi:10.1016/0142-9612(95)93851-4.
[170]  Nichterwitz, S.; Hoffmann, N.; Hajosch, R.; Oberhoffner, S.; Schlosshauer, B. Bioengineered glial strands for nerve regeneration. Neurosci. Lett. 2010, 484, 118–122.
[171]  Pearson, R.G.; Molino, Y.; Williams, P.M.; Tendler, S.J.B.; Davies, M.C.; Roberts, C.J.; Shakesheff, K.M. Spatial confinement of neurite regrowth from dorsal root ganglia within nonporous microconduits. Tissue Eng. 2003, 9, 201–208, doi:10.1089/107632703764664675.
[172]  Jeong, B.; Bae, Y.H.; Kim, S.W. Drug release from biodegradable injectable thermosensitive hydrogel of peg-plga-peg triblock copolymers. J. Control. Release 2000, 63, 155–163.
[173]  Chung, S.; King, M.W. Design concepts and strategies for tissue engineering scaffolds. Biotechnol. Appl. Bioc. 2011, 58, 423–438.
[174]  Wu, Z.-Z.; Kisaalita, W.S.; Wang, L.; Zachman, A.L.; Zhao, Y.; Hasneen, K.; Machacek, D.; Stice, S.L. Effects of topography on the functional development of human neural progenitor cells. Biotechnol. Bioeng. 2010, 106, 649–659, doi:10.1002/bit.22715.
[175]  Béduer, A.; Vieu, C.; Arnauduc, F.; Sol, J.-C.; Loubinoux, I.; Vaysse, L. Engineering of adult human neural stem cells differentiation through surface micropatterning. Biomaterials 2012, 33, 504–514.
[176]  Li, J.; McNally, H.; Shi, R. Enhanced neurite alignment on micro-patterned poly-l-lactic acid films. J. Biomed. Mater. Res. A 2008, 87, 392–404.
[177]  Gomez, N.; Chen, S.; Schmidt, C.E. Polarization of hippocampal neurons with competitive surface stimuli: Contact guidance cues are preferred over chemical ligands. J. Roy. Soc. Interface 2007, 4, 223–233.
[178]  Li, J.; Shi, R. Fabrication of patterned multi-walled poly-l-lactic acid conduits for nerve regeneration. J. Neurosci. Meth. 2007, 165, 257–264.
[179]  Comolli, N.; Neuhuber, B.; Fischer, I.; Lowman, A. In vitro analysis of pnipaam-peg, a novel, injectable scaffold for spinal cord repair. Acta Biomater. 2009, 5, 1046–1055, doi:10.1016/j.actbio.2008.10.008.
[180]  Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689.
[181]  Flanagan, L.A.; Ju, Y.E.; Marg, B.; Osterfield, M.; Janmey, P.A. Neurite branching on deformable substrates. Neuroreport 2002, 13, 2411–2415, doi:10.1097/00001756-200212200-00007.
[182]  Lampe, K.J.; Mooney, R.G.; Bjugstad, K.B.; Mahoney, M.J. Effect of macromer weight percent on neural cell growth in 2d and 3d nondegradable peg hydrogel culture. J. Biomed. Mater. Res. A 2010, 94, 1162–1171.
[183]  Banerjee, A.; Arha, M.; Choudhary, S.; Ashton, R.S.; Bhatia, S.R.; Schaffer, D.V.; Kane, R.S. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 2009, 30, 4695–4699, doi:10.1016/j.biomaterials.2009.05.050.
[184]  Br?nnvall, K.; Bergman, K.; Wallenquist, U.; Svahn, S.; Bowden, T.; Hilborn, J.; Forsberg-Nilsson, K. Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J. Neurosci. Res. 2007, 85, 2138–2146.
[185]  Hynes, S.R.; Rauch, M.F.; Bertram, J.P.; Lavik, E.B. A library of tunable poly(ethylene glycol)/poly(l-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation. J. Biomed. Mater. Res. A 2009, 89, 499–509.
[186]  Saha, K.; Keung, A.J.; Irwin, E.F.; Li, Y.; Little, L.; Schaffer, D.V.; Healy, K.E. Substrate modulus directs neural stem cell behavior. Biophys. J. 2008, 95, 4426–4438.
[187]  Mahoney, M.J.; Anseth, K.S. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 2006, 27, 2265–2274, doi:10.1016/j.biomaterials.2005.11.007.
[188]  Tomasek, J.J.; Gabbiani, G.; Hinz, B.; Chaponnier, C.; Brown, R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Bio. 2002, 3, 349–363.
[189]  Cheng, S.; Clarke, E.C.; Bilston, L.E. Rheological properties of the tissues of the central nervous system: A review. Med. Eng. Phys. 2008, 30, 1318–1337, doi:10.1016/j.medengphy.2008.06.003.
[190]  Chatelin, S.; Constantinesco, A.; Willinger, R. Fifty years of brain tissue mechanical testing: From in vitro to in vivo investigations. Biorheology 2010, 47, 255–276.
[191]  Kruse, S.A.; Rose, G.H.; Glaser, K.J.; Manduca, A.; Felmlee, J.P.; Jack, C.R., Jr.; Ehman, R.L. Magnetic resonance elastography of the brain. Neuroimage 2008, 39, 231–237.
[192]  Vappou, J.; Breton, E.; Choquet, P.; Goetz, C.; Willinger, R.; Constantinesco, A. Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurement. MAGMA 2007, 20, 273–278, doi:10.1007/s10334-007-0098-7.
[193]  Hamhaber, U.; Sack, I.; Papazoglou, S.; Rump, J.; Klatt, D.; Braun, J. Three-dimensional analysis of shear wave propagation observed by in vivo magnetic resonance elastography of the brain. Acta Biomater. 2007, 3, 127–137, doi:10.1016/j.actbio.2006.08.007.
[194]  Green, M.A.; Bilston, L.E.; Sinkus, R. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 2008, 21, 755–764, doi:10.1002/nbm.1254.
[195]  Fallenstein, G.T.; Hulce, V.D.; Melvin, J.W. Dynamic mechanical properties of human brain tissue. J. Biomech. 1969, 2, 217–226.
[196]  Galford, J.E.; McElhaney, J.H. A viscoelastic study of scalp, brain, and dura. J. Biomech. 1970, 3, 211–221, doi:10.1016/0021-9290(70)90007-2.
[197]  Tamura, A.; Hayashi, S.; Watanabe, I.; Nagayama, K.; Matsumoto, T. Mechanical characterization of brain tissue in high-rate compression. J. Biomech. Sci. Eng. 2007, 2, 115–126.
[198]  Laksari, K.; Shafieian, M.; Darvish, K. Constitutive model for brain tissue under finite compression. J. Biomech. 2012, 45, 642–646.
[199]  Rashid, B.; Destrade, M.; Gilchrist, M.D. Mechanical characterization of brain tissue in compression at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 2012, 10, 23–38.
[200]  Metz, H.; McElhaney, J.; Ommaya, A.K. A comparison of the elasticity of live, dead, and fixed brain tissue. J. Biomech. 1970, 3, 453–458, doi:10.1016/0021-9290(70)90017-5.
[201]  Van Dommelen, J.A.; van der Sande, T.P.; Hrapko, M.; Peters, G.W. Mechanical properties of brain tissue by indentation: Interregional variation. J. Mech. Behav. Biomed. Mater. 2010, 3, 158–166.
[202]  Gefen, A.; Gefen, N.; Zhu, Q.; Raghupathi, R.; Margulies, S.S. Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotraum. 2003, 20, 1163–1177.
[203]  Gefen, A.; Margulies, S.S. Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 2004, 37, 1339–1352, doi:10.1016/j.jbiomech.2003.12.032.
[204]  Elkin, B.S.; Azeloglu, E.U.; Costa, K.D.; Morrison, B., 3rd. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma 2007, 24, 812–822.
[205]  Mazuchowski, E.L.; Thibault, L. Biomechanical properties of the human spinal cord and pia mater. In Proceedings of 2003 Summer Bioengineering Conference, Florida, FL, USA, 25-29 June 2003.
[206]  Bilston, L.E.; Thibault, L.E. The mechanical properties of the human cervical spinal cord in vitro. Ann. Biomed. Eng. 1996, 24, 67–74.
[207]  Hung, T.K.; Chang, G.L. Biomechanical and neurological response of the spinal cord of a puppy to uniaxial tension. J. Biomech. Eng. 1981, 103, 43–47, doi:10.1115/1.3138244.
[208]  Hung, T.K.; Chang, G.L.; Lin, H.S.; Walter, F.R.; Bunegin, L. Stress-strain relationship of the spinal cord of anesthetized cats. J. Biomech. 1981, 14, 269–276.
[209]  Tunturi, A.R. Elasticity of the spinal cord, pia, and denticulate ligament in the dog. J. Neurosurg. 1978, 48, 975–979, doi:10.3171/jns.1978.48.6.0975.
[210]  Ichihara, K.; Taguchi, T.; Shimada, Y.; Sakuramoto, I.; Kawano, S.; Kawai, S. Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. J. Neurotrauma 2001, 18, 361–367.
[211]  Ozawa, H.; Matsumoto, T.; Ohashi, T.; Sato, M.; Kokubun, S. Comparison of spinal cord gray matter and white matter softness: Measurement by pipette aspiration method. J. Neurosurg. 2001, 95, 221–224.
[212]  Saxena, T.; Gilbert, J.; Stelzner, D.; Hasenwinkel, J. Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat. J. Neurotrauma 2012, 29, 1747–1757, doi:10.1089/neu.2011.1818.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133