全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Nickel, Chlorpyrifos and Their Mixture on the Dictyostelium discoideum Proteome

DOI: 10.3390/ijms131215679

Keywords: Dictyostelium discoideum, toxicity, nickel, chlorpyrifos, proteomics, mass spectrometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mixtures of chemicals can have additive, synergistic or antagonistic interactions. We investigated the effects of the exposure to nickel, the organophosphate insecticide chlorpyrifos at effect concentrations (EC) of 25% and 50% and their binary mixture (Ec25 + EC25) on Dictyostelium discoideum amoebae based on lysosomal membrane stability (LMS). We treated D. discoideum with these compounds under controlled laboratory conditions and evaluated the changes in protein levels using a two-dimensional gel electrophoresis (2DE) proteomic approach. Nickel treatment at EC25 induced changes in 14 protein spots, 12 of which were down-regulated. Treatment with nickel at EC50 resulted in changes in 15 spots, 10 of which were down-regulated. Treatment with chlorpyrifos at EC25 induced changes in six spots, all of which were down-regulated; treatment with chlorpyrifos at EC50 induced changes in 13 spots, five of which were down-regulated. The mixture corresponding to EC25 of each compound induced changes in 19 spots, 13 of which were down-regulated. The data together reveal that a different protein expression signature exists for each treatment, and that only a few proteins are modulated in multiple different treatments. For a simple binary mixture, the proteomic response does not allow for the identification of each toxicant. The protein spots that showed significant differences were identified by mass spectrometry, which revealed modulations of proteins involved in metal detoxification, stress adaptation, the oxidative stress response and other cellular processes.

References

[1]  Cedergreen, N.; Streibig, J.C. Can the choice of endpoint lead to contradictory results of mixture-toxicity experiments. Environ. Toxicol. Chem 2005, 24, 1676–1683.
[2]  Amorim, M.J.B.; Pereira, C.; Menezes-Oliveira, V.B.; Campos, B.; Soares, A.M.V.M.; Loureiro, S. Assessing single and joint effects of chemicals on the survival and reproduction of Folsomia candida (Collembola) in soil. Environ. Pollut 2012, 160, 145–152.
[3]  Altenburger, R.; Scholz, S.; Schmitt-Jansen, M.; Busch, W.; Escher, B.I. Mixture toxicity revisited from a toxicogenomic perspective. Environ. Sci. Technol 2012, 46, 2508–2522.
[4]  Rager, J.E.; Lichtveld, K.; Ebersviller, S.; Smeester, L.; Jaspers, I.; Sexton, K.G.; Fry, R.C. A toxicogenomic comparison of primary and photochemically altered air pollutant mixtures. Environ. Health Persp 2011, 119, 1583–1589.
[5]  Finne, E.F.; Cooper, G.A.; Koop, B.F.; Hylland, K.; Tollefsen, K.E. Toxicogenomic responses in rainbow trout (Oncorhynchus mykiss) hepatocytes exposed to model chemicals and a synthetic mixture. Aquat. Toxicol 2007, 81, 293–303.
[6]  Quandt, S.A.; Chen, H.; Grzywacz, J.G.; Vallejos, Q.M.; Galvan, L.; Arcury, T.A. Cholinesterase depression and its association with pesticide exposure across the agricultural season among Latino farmworkers in North Carolina. Environ. Health Persp 2010, 118, 635–639.
[7]  Schr?der, P.; Collins, C.D.; Markert, B.; Wünschmann, S. Bioindicators and Biomonitors: Use of Organisms to Observe the Influence of Chemicals on the Environment. In Organic Xenobiotics and Plants; Springer Netherlands: Dordrecht, The Netherlands, 2011; Volume 8, pp. 217–236.
[8]  Coogan, T.P.; Latta, D.M.; Snow, E.T.; Costa, M. Toxicity and carcinogenicity of nickel compounds. Crit. Rev. Toxicol 1989, 19, 341–384.
[9]  US Environmental Protection Agency. Ambient Water Quality Criteria for Nickel; Office of Water Regulations and Standards: Washington, DC, USA, 1986. EPA/440/5-86/004.
[10]  Brix, K.V.; Keithly, J.T.; DeForest, D.K.; Laughlin, T. Acute and chronic toxicity of nickel to rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Chem 2004, 23, 2221–2228.
[11]  Banni, M.; Jebali, J.; Guerbej, H.; Dondero, F.; Boussetta, H.; Viarengo, A. Mixture toxicity assessment of nickel and chlorpyrifos in the sea bass Dicentrarchus labrax. Arch. Environ. Contam. Toxicol 2011, 60, 124–131.
[12]  Keithly, J.; Brooker, J.A.; DeForest, D.K.; Wu, B.K.; Brix, K.V. Acute and chronic toxicity of nickel to a cladoceran (Ceriodaphnia dubia) and an amphipod (Hyalella azteca). Environ. Toxicol. Chem 2004, 23, 691–696.
[13]  Majorel, C.; Hannibal, L.; Soupe, M.-E.; Carriconde, F.; Ducousso, M.; Lebrun, M.; Jourand, P. Tracking nickel-adaptive biomarkers in Pisolithus albus from New Caledonia using a transcriptomic approach. Mol. Ecol 2012, 21, 2208–2223.
[14]  Macomber, L.; Hausinger, R.P. Mechanisms of nickel toxicity in microorganisms. Metallomics 2011, 3, 1153–1162.
[15]  Yusuf, M.; Fariduddin, Q.; Hayat, S.; Ahmad, A. Nickel: An overview of uptake, essentiality and toxicity in plants. Bull. Environ. Contam. Toxicol 2011, 86, 1–17.
[16]  Lemus, R.; Abdelghani, A. Chlorpyrifos: An unwelcome pesticide in our homes. Rev. Environ. Health 2000, 15, 421–433.
[17]  Eaton, D.L.; Daroff, R.B.; Autrup, H.; Bridges, J.; Buffler, P.; Costa, L.G.; Coyle, J.; McKhann, G.; Mobley, W.C.; Nadel, L.; et al. Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit. Rev. Toxicol 2008, 38, 1–125.
[18]  Amaroli, A.; Trielli, F.; Bianco, B.; Giordano, S.; Moggia, E.; Corrado, M.U.D. Effects of time-variant extremely low-frequency (ELF) electromagnetic fields (EMF) on cholinesterase activity in Dictyostelium discoideum (Protista). Chem. Biol. Interact 2005, 157, 355–356.
[19]  Qiao, D.; Seidler, F.J.; Slotkin, T.A. Developmental neurotoxicity of chlorpyrifos modeled in vitro: Comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells. Environ. Health Persp 2001, 109, 909–913.
[20]  Richards, S.M.; Kendall, R.J. Biochemical effects of chlorpyrifos on two developmental stages of Xenopus laevis. Environ. Toxicol. Chem 2002, 21, 1826–1835.
[21]  Whitney, K.D.; Seidler, F.J.; Slotkin, T.A. Developmental neurotoxicity of chlorpyrifos—Cellular mechanisms. Toxicol. Appl. Pharmacol 1995, 134, 53–62.
[22]  Narra, M.R.; Begum, G.; Rajender, K.; Rao, J.V. Sub-lethal effect of chlorpyrifos on protein metabolism of the food fish Clarias batrachus and monitoring of recovery. Toxicol. Environ. Chem 2011, 93, 1650–1658.
[23]  Demir, F.; Uzun, F.G.; Durak, D.; Kalender, Y. Subacute chlorpyrifos-induced oxidative stress in rat erythrocytes and the protective effects of catechin and quercetin. Pestic. Biochem. Physiol 2011, 99, 77–81.
[24]  Jiang, W.; Duysen, E.G.; Hansen, H.; Shlyakhtenko, L.; Schopfer, L.M.; Lockridge, O. Mice treated with chlorpyrifos or chlorpyrifos oxon have organophosphorylated tubulin in the brain and disrupted microtubule structures, suggesting a role for tubulin in neurotoxicity associated with exposure to organophosphorus agents. Toxicol. Sci 2010, 115, 183–193.
[25]  Dondero, F.; Banni, M.; Negri, A.; Boatti, L.; Dagnino, A.; Viarengo, A. Interactions of a pesticide/heavy metal mixture in marine bivalves: A transcriptomic assessment. BMC Genomics 2011, 12, 195.
[26]  Moore, M.N.; Farrar, S.V. Effects of polynuclear aromatic-hydrocarbons on lysosomal membranes in mollusks. Mar. Environ. Res 1985, 17, 222–225.
[27]  Viarengo, A.; Nott, J.A. Mechanisms of heavy-metal cation homeostasis in marine-invertebrates. Comp. Biochem. Physiol. C 1993, 104, 355–372.
[28]  Loewe, S.; Muischnek, H. Effect of combinations: Mathematical basis of problem. Arch. Exp. Pathol. Pharmacol 1926, 114, 313–326.
[29]  Hughes, J.E.; DeLange, K.L.; Welker, D.L. Dictyostelium discoideum cobB mutants show reduced heavy metal accumulation associated with gene amplification. Mol. Gen. Genet 1996, 253, 65–73.
[30]  Karthikeyan, J.; Bavani, G. Effect of cadmium on lactate dehyrogenase isoenzyme, succinate dehydrogenase and NA(+)-K+-ATPase in liver tissue of rat. J. Environ. Biol 2009, 30, 895–898.
[31]  Espartero, J.; Pintortoro, J.A.; Pardo, J.M. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol. Biol 1994, 25, 217–227.
[32]  Mayne, M.B.; Coleman, J.R.; Blumwald, E. Differential expression during drought conditioning of a root-specific S-adenosylmethionine synthetase from jack pine (Pinus banksiana Lamb) seedlings. Plant Cell Environ 1996, 19, 958–966.
[33]  Ahsan, N.; Lee, D.-G.; Alam, I.; Kim, P.J.; Lee, J.J.; Ahn, Y.-O.; Kwak, S.-S.; Lee, I.-J.; Bahk, J.D.; Kang, K.Y.; et al. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 2008, 8, 3561–3576.
[34]  Hubberstey, A.V.; Mottillo, E.P. Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization. FASEB J 2002, 16, 487–499.
[35]  Sultana, H.; Rivero, F.; Blau-Wasser, R.; Schwager, S.; Balbo, A.; Bozzaro, S.; Schleicher, M.; Noegel, A.A. Cyclase-associated protein is essential for the functioning of the endo-lysosomal system and provides a link to the actin cytoskeleton. Traffic 2005, 6, 930–946.
[36]  Sun, Y.; Ou, Y.; Cheng, M.; Ruan, Y.; van der Hoorn, F.A. Binding of nickel to testicular glutamate-ammonia ligase inhibits Its enzymatic activity. Mol. Reprod. Dev 2011, 78, 104–115.
[37]  Zhang, B.L.; Zhang, Y.Q.; Dagher, M.C.; Shacter, E. Rho GDP dissociation inhibitor protects cancer cells against drug-induced apoptosis. Cancer Res 2005, 65, 6054–6062.
[38]  Hartwig, A. Zinc finger proteins as potential targets for toxic metal ions: Differential effects on structure and function. Antioxid. Redox Signal 2001, 3, 625–634.
[39]  Ahsan, N.; Lee, D.-G.; Lee, S.-H.; Kang, K.Y.; Lee, J.J.; Kim, P.J.; Yoon, H.-S.; Kim, J.-S.; Lee, B.-H. Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 2007, 67, 1182–1193.
[40]  Bhatt, I.; Tripathi, B.N. Plant peroxiredoxins: Catalytic mechanisms, functional significance and future perspectives. Biotechnol. Adv 2011, 29, 850–859.
[41]  Bonin, S.; Larese, F.F.; Trevisan, G.; Avian, A.; Rui, F.; Stanta, G.; Bovenzi, M. Gene expression changes in peripheral blood mononuclear cells in occupational exposure to nickel. Exp. Dermatol 2011, 20, 147–148.
[42]  Kubrak, O.I.; Husak, V.V.; Rovenko, B.M.; Poigner, H.; Mazepa, M.A.; Kriews, M.; Abele, D.; Lushchak, V.I. Tissue specificity in nickel uptake and induction of oxidative stress in kidney and spleen of goldfish Carassius auratus, exposed to waterborne nickel. Aquat. Toxicol 2012, 118, 88–96.
[43]  Lynn, S.; Yew, F.H.; Chen, K.S.; Jan, K.Y. Reactive oxygen species are involved in nickel inhibition of DNA repair. Environ. Mol. Mutagen 1997, 29, 208–216.
[44]  Randhawa, V.K.; Zhou, F.Z.; Jin, X.L.; Nalewajko, C.; Kushner, D.J. Role of oxidative stress and thiol antioxidant enzymes in nickel toxicity and resistance in strains of the green alga Scenedesmus acutus f. alternans. Can. J. Microbiol 2001, 47, 987–993.
[45]  Fang, H.-Y.; Chang, C.-L.; Hsu, S.-H.; Huang, C.-Y.; Chiang, S.-F.; Chiou, S.-H.; Huang, C.-H.; Hsiao, Y.-T.; Lin, T.-Y.; Chiang, I.P.; et al. ATPase family AAA domain-containing 3A is a novel anti-apoptotic factor in lung adenocarcinoma cells. J. Cell Sci 2010, 123, 1171–1180.
[46]  Berger, W.; Steiner, E.; Grusch, M.; Elbling, L.; Micksche, M. Vaults and the major vault protein: Novel roles in signal pathway regulation and immunity. Cell Mol. Life Sci 2009, 66, 43–61.
[47]  Ryu, S.J.; Park, S.C. Targeting major vault protein in senescence-associated apoptosis resistance. Expert Opin. Ther. Targets 2009, 13, 479–484.
[48]  Baviskar, S.N.; Shields, M.S. RNAi silenced Dd-grp94 (Dictyostelium discoideum glucose-regulated protein 94 kDa) cell lines in Dictyostelium exhibit marked reduction in growth rate and delay in development. Gene Expr 2010, 15, 75–87.
[49]  Mani, A.; Gelmann, E.P. The ubiquitin-proteasome pathway and its role in cancer. J. Clin. Oncol 2005, 23, 4776–4789.
[50]  Oliveira, I.C.; Coruzzi, G.M. Carbon and amino acids reciprocally modulate the expression of glutamine synthetase in arabidopsis. Plant Physiol 1999, 121, 301–309.
[51]  Reddy, P.S.; Bhagyalakshmi, A. Fenitrothion-induced alterations in ammonia metabolism in the crab, Oziotelphusa-senex-senex Fabricius. Pestic. Sci 1992, 35, 249–254.
[52]  Lukaszewicz-Hussain, A.; Moniuszko-Jakoniuk, J. Chlorfenvinphos, an organophosphate insecticide, affects liver mitochondria antioxidative enzymes, glutathione and hydrogen peroxide concentration. Pol. J. Environ. Stud 2004, 13, 397–401.
[53]  Almeida, J.R.; Oliveira, C.; Gravato, C.; Guilhermino, L. Linking behavioural alterations with biomarkers responses in the European seabass Dicentrarchus labrax L. exposed to the organophosphate pesticide fenitrothion. Ecotoxicology 2010, 19, 1369–1381.
[54]  Lee, S.M.; Koh, H.J.; Park, D.C.; Song, B.J.; Huh, T.L.; Park, J.W. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med 2002, 32, 1185–1196.
[55]  Noguer, T.; Marty, J.L. High sensitive bienzymic sensor for the detection of dithiocarbamate fungicides. Anal. Chim. Acta 1997, 347, 63–70.
[56]  Marty, J.L.; Noguer, T. Bienzyme amperometric sensor for the detection of dithiocarbamate fungicides. Analysis 1993, 21, 231–233.
[57]  Marty, J.L.; Mionetto, N.; Noguer, T.; Ortega, F.; Roux, C. Enzyme sensors for the detection of pesticides. Biosens. Bioelectron 1993, 8, 273–280.
[58]  Ginzberg, I.; Barel, G.; Ophir, R.; Tzin, E.; Tanami, Z.; Muddarangappa, T.; de Jong, W.; Fogelman, E. Transcriptomic profiling of heat-stress response in potato periderm. J. Exp. Bot 2009, 60, 4411–4421.
[59]  Doran, B.; Gherbesi, N.; Hendricks, G.; Flavell, R.A.; Davis, R.J.; Gangwani, L. Deficiency of the zinc finger protein ZPR1 causes neurodegeneration. Proc. Natl. Acad. Sci. USA 2006, 103, 7471–7475.
[60]  Gangwani, L. Deficiency of the zinc finger protein ZPR1 causes defects in transcription and cell cycle progression. J. Biol. Chem 2006, 281, 40330–40340.
[61]  Cairo, G.; Pietrangelo, A. Iron regulatory proteins in pathobiology. Biochem. J 2000, 352, 241–250.
[62]  Sax, C.M.; Salamon, C.; Kays, W.T.; Guo, J.; Yu, F.S.X.; Cuthbertson, R.A.; Piatigorsky, J. Transketolase is a major protein in the mouse cornea. J. Biol. Chem 1996, 271, 33568–33574.
[63]  Singh, P.K.; Rai, S.; Pandey, S.; Agrawal, C.; Shrivastava, A.K.; Kumar, S.; Rai, L.C. Cadmium and UV-B induced changes in proteome and some biochemical attributes of Anabaena sp. PCC7120. Phykos 2012, 42, 39–50.
[64]  Gerke, V.; Moss, S.E. Annexins and membrane dynamics. BBA-Mol. Cell Res 1997, 1357, 129–154.
[65]  Gerke, V.; Creutz, C.E.; Moss, S.E. Annexins: Linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol 2005, 6, 449–461.
[66]  Rhee, H.J.; Kim, G.Y.; Huh, J.W.; Kim, S.W.; Na, D.S. Annexin I is a stress protein induced by heat, oxidative stress and a sulfhydryl-reactive agent. Eur. J. Biochem 2000, 267, 3220–3225.
[67]  Sacre, S.M.; Moss, S.E. Intracellular localization of endothelial cell annexins is differentially regulated by oxidative stress. Exp. Cell Res 2002, 274, 254–263.
[68]  Tanaka, T.; Akatsuka, S.; Ozeki, M.; Shirase, T.; Hiai, H.; Toyokuni, S. Redox regulation of annexin 2 and its implications for oxidative stress-induced renal carcinogenesis and metastasis. Oncogene 2004, 23, 3980–3989.
[69]  Gorecka, K.M.; Konopka-Postupolska, D.; Hennig, J.; Buchet, R.; Pikula, S. Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochem. Biophys. Res. Commun 2005, 336, 868–875.
[70]  Jami, S.K.; Clark, G.B.; Turlapati, S.A.; Handley, C.; Roux, S.J.; Kirti, P.B. Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiol. Biochem 2008, 46, 1019–1030.
[71]  Forsthoefel, N.R.; Cushman, M.A.F.; Cushman, J.C. Posttranscriptional and Posttranslational Control of Enolase Expression in the Facultative Crassulacean Acid Metabolism Plant Mesembryanthemum crystallinum L. Plant Physiol 1995, 108, 1185–1195.
[72]  Yang, H.S.; Henning, D.; Valdez, B.C. Functional interaction between RNA helicase II Gu alpha and ribosomal protein L4. FEBS J 2005, 272, 3788–3802.
[73]  Spycher, S.E.; TabatabaVakili, S.; Odonnell, V.B.; Palomba, L.; Azzi, A. Aldose reductase induction: A novel response to oxidative stress of smooth muscle cells. FASEB J 1997, 11, 181–188.
[74]  Marsano, F.; Boatti, L.; Ranzato, E.; Cavaletto, M.; Magnelli, V.; Dondero, F.; Viarengo, A. Effects of mercury on Dictyostelium discoideum: Proteomics reveals the molecular mechanisms of physiological adaptation and toxicity. J. Proteome Res 2010, 9, 2839–2854.
[75]  Watts, D.J.; Ashworth, J.M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem. J 1970, 119, 171–174.
[76]  Sussman, M. Cultivation and synchronous morphogenesis of Dictyostelium under controlled experimental conditions. Methods Cell Biol 1987, 28, 9–29.
[77]  Dondero, F.; Jonsson, H.; Rebelo, M.; Pesce, G.; Berti, E.; Pons, G.; Viarengo, A. Cellular responses to environmental contaminants in amoebic cells of the slime mould Dictyostelium discoideum. Comp. Biochem. Physiol. C Toxicol. Pharmacol 2006, 143, 150–157.
[78]  Neuhoff, V.; Arold, N.; Taube, D.; Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988, 9, 255–262.
[79]  Matrix Science. Available online: http://www.matrixscience.com/ , accessed on 1 June 2012.
[80]  National Center for Biotechnology Information. Available online: http://www.ncbi.nlm.nih.gov/ , accessed on 1 July 2012.
[81]  Powlesland, C.; George, J. Acute and chronic toxicity of nickel to larvae of Chironomus riparis (Meigen). Environ. Pollut. A 1986, 42, 47–64.
[82]  Burlando, B.; Evangelisti, V.; Dondero, F.; Pons, G.; Camakaris, J.; Viarengo, A. Occurrence of Cu-ATPase in Dictyostelium: Possible role in resistance to copper. Biochem. Biophys. Res. Commun 2002, 291, 476–483.
[83]  Gayatri, R.; Chatterjee, S. Phagocytic-activity of dictyostelium amoebae treated with an organochlorine pesticide. Cell Biol. Internat 1993, 17, 349–352.
[84]  Yin, L.; Mano, J.; Wang, S.; Tsuji, W.; Tanaka, K. The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots. Plant Physiol 2010, 152, 1406–1417.
[85]  Costa, P.M.; Chicano-Galvez, E.; Barea, J.L.; DelValls, T.A.; Costa, M.H. Alterations to proteome and tissue recovery responses in fish liver caused by a short-term combination treatment with cadmium and benzo a pyrene. Environ. Pollut 2010, 158, 3338–3346.
[86]  Zhou, Q.; Wu, C.G.; Dong, B.; Li, F.H.; Liu, F.Q.; Xiang, J.H. Proteomic analysis of acute responses to copper sulfate stress in larvae of the brine shrimp, Artemia sinica. Chin. J. Oceanol. Limnol 2010, 28, 224–232.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133