全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Pharmacological NF-κB Inhibitor BAY11-7082 Induces Cell Apoptosis and Inhibits the Migration of Human Uveal Melanoma Cells

DOI: 10.3390/ijms131215653

Keywords: uveal melanoma, NF-κB, BAY11-7082, apoptosis, cell migration

Full-Text   Cite this paper   Add to My Lib

Abstract:

Uveal melanomas are highly metastatic and have high rate of recurrence due to the lack of effective systemic therapy. The identification of important survival pathways in uveal melanomas provides novel therapeutic targets for effective treatment. In the present study, we found that the NF-κB signaling pathway was constitutively and highly activated in uveal melanoma cells. Treatment with the pharmacological NF-κB specific inhibitor BAY11-7082 markedly decreased the nuclear translocation of NF-κB. In a dose-dependent setting, BAY11-7082 inhibited the proliferation and growth of uveal melanoma cells by inducing apoptosis without effect on cell cycle. The migration capacity of uveal melanoma cells was also significantly suppressed by BAY11-7082 treatment. Mechanistically, BAY11-7082 increased the activity of caspase 3 and reduced the expression of anti-apoptotic protein Bcl-2, but did not influence the expression of pro-apoptotic protein Bax. Furthermore, BAY11-7082 induced uveal melanoma cell apoptosis and inhibited xenograft tumor growth in vivo. Collectively, the present study identified NF-κB as an important survival signal for uveal melanoma cells and suggested that administration of specific NF-κB inhibitor BAY11-7082 could serve as an effective treatment for patients with uveal melanoma.

References

[1]  Mariani, P.; Servois, V.; Piperno-Neumann, S. Therapeutic options in metastatic uveal melanoma. Dev. Ophthalmol 2012, 49, 166–181.
[2]  Singh, A.D.; Turell, M.E.; Topham, A.K. Uveal melanoma: Trends in incidence, treatment, and survival. Ophthalmology 2011, 118, 1881–1885.
[3]  Woodman, S.E. Metastatic uveal melanoma: Biology and emerging treatments. Cancer J 2012, 18, 148–152.
[4]  Triozzi, P.L.; Eng, C.; Singh, A.D. Targeted therapy for uveal melanoma. Cancer Treat. Rev 2008, 34, 247–258.
[5]  Ben-Neriah, Y.; Karin, M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat. Immunol 2011, 12, 715–723.
[6]  Lee, C.H.; Jeon, Y.T.; Kim, S.H.; Song, Y.S. NF-kappaB as a potential molecular target for cancer therapy. Biofactors 2007, 29, 19–35.
[7]  Perkins, N.D. The diverse and complex roles of NF-kappaB subunits in cancer. Nat. Rev. Cancer 2012, 12, 121–132.
[8]  Nogueira, L.; Ruiz-Ontanon, P.; Vazquez-Barquero, A.; Moris, F.; Fernandez-Luna, J.L. The NFkappaB pathway: A therapeutic target in glioblastoma. Oncotarget 2011, 2, 646–653.
[9]  Luedde, T.; Schwabe, R.F. NF-kappaB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol 2011, 8, 108–118.
[10]  Sakamoto, K.; Maeda, S. Targeting NF-kappaB for colorectal cancer. Expert. Opin. Ther. Targets 2010, 14, 593–601.
[11]  Li, B.; Li, Y.Y.; Tsao, S.W.; Cheung, A.L. Targeting NF-kappaB signaling pathway suppresses tumor growth, angiogenesis, and metastasis of human esophageal cancer. Mol. Cancer Ther 2009, 8, 2635–2644.
[12]  Matsumoto, G.; Namekawa, J.; Muta, M.; Nakamura, T.; Bando, H.; Tohyama, K.; Toi, M.; Umezawa, K. Targeting of nuclear factor kappaB Pathways by dehydroxymethylepoxyquinomicin, a novel inhibitor of breast carcinomas: Antitumor and antiangiogenic potential in vivo. Clin. Cancer Res 2005, 11, 1287–1293.
[13]  Vaccaro, V.; Melisi, D.; Bria, E.; Cuppone, F.; Ciuffreda, L.; Pino, M.S.; Gelibter, A.; Tortora, G.; Cognetti, F.; Milella, M. Emerging pathways and future targets for the molecular therapy of pancreatic cancer. Expert. Opin. Ther. Targets 2011, 15, 1183–1196.
[14]  Mori, N.; Yamada, Y.; Ikeda, S.; Yamasaki, Y.; Tsukasaki, K.; Tanaka, Y.; Tomonaga, M.; Yamamoto, N.; Fujii, M. Bay 11–7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood 2002, 100, 1828–1834.
[15]  Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674.
[16]  Karin, M.; Yamamoto, Y.; Wang, Q.M. The IKK NF-kappa B system: A treasure trove for drug development. Nat. Rev. Drug Discov 2004, 3, 17–26.
[17]  Paillard, F. Induction of apoptosis with I-kappaB, the inhibitor of NF-kappaB. Hum. Gene Ther 1999, 10, 1–3.
[18]  Karin, M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol 2009, 1, a000141.
[19]  Dror, R.; Lederman, M.; Umezawa, K.; Barak, V.; Pe’er, J.; Chowers, I. Characterizing the involvement of the nuclear factor-kappa B (NF kappa B) transcription factor in uveal melanoma. Invest. Ophthalmol. Vis. Sci 2010, 51, 1811–1816.
[20]  Zhou, Y.; Song, X.; Jia, R.; Wang, H.; Dai, L.; Xu, X.; Gu, P.; Ge, S.; Fan, X. Radiation-inducible human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy: A novel treatment for radioresistant uveal melanoma. Pigment Cell Melanoma Res 2010, 23, 661–674.
[21]  Asnaghi, L.; Ebrahimi, K.B.; Schreck, K.C.; Bar, E.E.; Coonfield, M.L.; Bell, W.R.; Handa, J.; Merbs, S.L.; Harbour, J.W.; Eberhart, C.G. Notch signaling promotes growth and invasion in uveal melanoma. Clin. Cancer Res 2012, 18, 654–665.
[22]  Dong, F.; Lou, D. MicroRNA-34b/c suppresses uveal melanoma cell proliferation and migration through multiple targets. Mol. Vis 2012, 18, 537–546.
[23]  Keller, S.A.; Hernandez-Hopkins, D.; Vider, J.; Ponomarev, V.; Hyjek, E.; Schattner, E.J.; Cesarman, E. NF-kappaB is essential for the progression of KSHV- and EBV-infected lymphomas in vivo. Blood 2006, 107, 3295–3302.
[24]  Meng, Z.; Lou, S.; Tan, J.; Xu, K.; Jia, Q.; Zheng, W.; Wang, S. Nuclear factor-kappa B inhibition can enhance therapeutic efficacy of (131)I on the in vivo management of differentiated thyroid cancer. Life Sci 2012, 91, 1236–1241.
[25]  Pierce, J.W.; Schoenleber, R.; Jesmok, G.; Best, J.; Moore, S.A.; Collins, T.; Gerritsen, M.E. Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J. Biol. Chem 1997, 272, 21096–21103.
[26]  Bentires-Alj, M.; Dejardin, E.; Viatour, P.; Van Lint, C.; Froesch, B.; Reed, J.C.; Merville, M.P.; Bours, V. Inhibition of the NF-kappa B transcription factor increases Bax expression in cancer cell lines. Oncogene 2001, 20, 2805–2813.
[27]  Tamatani, M.; Che, Y.H.; Matsuzaki, H.; Ogawa, S.; Okado, H.; Miyake, S.; Mizuno, T.; Tohyama, M. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons. J. Biol. Chem 1999, 274, 8531–8538.
[28]  Evan, G.I; Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature 2001, 411, 342–348.
[29]  Yan, D.; Zhou, X.; Chen, X.; Hu, D.N.; Dong, X.D.; Wang, J.; Lu, F.; Tu, L.; Qu, J. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met. Invest. Ophthalmol. Vis. Sci 2009, 50, 1559–1565.
[30]  Chen, W.; Li, Z.; Bai, L.; Lin, Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front. Biosci 2011, 16, 1172–1185.
[31]  Hsu, Y.L.; Chen, C.Y.; Lin, I.P.; Tsai, E.M.; Kuo, P.L.; Hou, M.F. 4-Shogaol, an active constituent of dietary ginger, inhibits metastasis of MDA-MB-231 human breast adenocarcinoma cells by decreasing the repression of NF-kappaB/Snail on RKIP. J. Agric. Food Chem 2012, 60, 852–861.
[32]  Cun, B.; Song, X.; Jia, R.; Zhao, X.; Wang, H.; Ge, S.; Fan, X. Combination of oncolytic adenovirus and dacarbazine attenuates antitumor ability against uveal melanoma cells via cell cycle block. Cancer Biol. Ther 2012, 13, 77–84.
[33]  Luo, Q.; Hu, S.; Yan, M.; Sun, Z.; Chen, W.; Chen, F. Activation of Toll-like receptor 3 induces apoptosis of oral squamous carcinoma cells in vitro and in vivo. Int. J. Biochem. Cell Biol 2012, 44, 1266–1275.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133