ZnO nanostructures were synthesized by hydrothermal method using different molar ratios of cetyltrimethylammonium bromide (CTAB) and Sodium dodecyl sulfate (SDS) as structure directing agents. The effect of surfactants on the morphology of the ZnO crystals was investigated by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. The results indicate that the mixture of cationic-anionic surfactants can significantly modify the shape and size of ZnO particles. Various structures such as flakes, sheets, rods, spheres, flowers and triangular-like particles sized from micro to nano were obtained. In order to examine the possible changes in other properties of ZnO, characterizations like powder X-ray diffraction (PXRD), thermogravimetric and differential thermogravimetric analysis (TGA-DTG), FTIR, surface area and porosity and UV-visible spectroscopy analysis were also studied and discussed.
References
[1]
Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. Three-dimensional array of highly oriented crystalline ZnO microtubes. Communications 2001, 13, 52–55.
[2]
Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. Nanowire ultraviolet photodetectors and Optical switches. Adv. Mater 2002, 14, 158–160.
[3]
Yang, J.L.; An, S.J.; Park, W.I.; Yi, G.-C.; Choi, W. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Adv. Mater 2004, 16, 1661–1664.
[4]
Qurashi, A.; Tabet, N.; Faiz, M.; Yamzaki, T. Ultra-fast microwave synthesis of ZnO nanowires and their dynamic response toward hydrogen gas. Nanoscale Res. Lett 2009, 4, 948–954.
[5]
McBride, R.A.; Kelly, J.M.; McCormack, D.E. Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts. J. Mater. Chem 2003, 13, 1196–1201.
[6]
Li, Q.; Kumar, V.; Li, Y.; Zhang, H.; Marks, T.J.; Chang, R.P.H. Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mater 2005, 5, 1001–1006.
[7]
Wang, W.Z.; Zeng, B.Q.; Yang, J.; Poudel, B.; Huang, J.Y.; Naughton, M.J.; Ren, Z.F. Aligned ultralong ZnO nanobelts and their enhanced field emission. Adv. Mater 2006, 18, 3275–3278.
[8]
Krishnakumar, T.; Jayaprakash, R.; Pinna, N.; Singh, V.N.; Mehta, B.R.; Phani, A.R. Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures. Mater. Lett 2008, 63, 242–245.
[9]
Tabet, N.; Al Ghashani, R.; Achour, S. Ultra fast synthesis of zinc oxide nanostructures by microwaves. Superlattice Microst 2009, 45, 598–603.
[10]
Samaele, N.; Amornpitoksuk, P.; Suwanboon, S. Effect of pH on the morphology and optical properties of modified ZnO particles by SDS via a precipitation method. Powder Technol 2010, 203, 243–247.
[11]
Kulkarni, S.B.; Patil, U.M.; Salunkhe, R.R.; Joshi, S.S.; Lokhande, C.D. Temperature impact on morphological evolution of ZnO and its consequent effect on physico-chemical properties. J. Alloys Compd 2011, 509, 3486–3492.
[12]
Sun, G.; Cao, M.; Wang, Y.; Hu, C.; Liu, Y.; Ren, L.; Pu, Z. Anionic surfactant-assisted hydrothermal synthesis of high-aspect-ratio ZnO nanowires and their photoluminescence property. Mater. Lett 2006, 60, 2777–2782.
[13]
Zhao, M.; Wu, D.; Chang, J.; Bai, Z.; Jiang, K. Synthesis of cup-like ZnO microcrystals via a CTAB-assisted hydrothermal route. Mater. Chem. Phys 2009, 117, 422–424.
[14]
Feng, Y.; Zhang, M.; Guo, M.; Wang, X. Studies on the PEG-assisted hydrothermal synthesis and growth mechanism of ZnO microrod and mesoporous microsphere arrays on the substrate. Cryst. Growth Des 2010, 10, 1500–1507.
[15]
Lim, Z.H.; Chia, Z.X.; Kevin, M.; Wong, A.S.W.; Ho, G.W. A facile approach towards ZnO nanorods conductive textile for room temperature multifunctional sensors. Sens. Actuators B: Chem 2010, 151, 121–126.
[16]
Kevin, M.; Fou, Y.H.; Wong, A.S.W.; Ho, G.W. A novel maskless approach towards aligned, density modulated and multi-junction ZnO nanowires for enhanced surface area and light trapping solar cells. Nanotechnology 2010, 21, 315602.
[17]
Choi, K.-S.; Lichtenegger, H.C.; Stucky, G.D.; McFarland, E.W. Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid-liquid interfaces. J. Am. Chem. Soc 2002, 124, 12402–12403.
[18]
Tan, Y.; Steinmiller, E.M.P.; Choi, K.-S. Electrochemical tailoring of lamellar-structured ZnO films by interfacial surfactant templating. Langmuir 2005, 21, 9618–9624.
[19]
Usui, H. The effect of surfactants on the morphology and optical properties of precipitated wurtzite ZnO. Mater. Lett 2009, 63, 1489–1492.
[20]
Lv, S.; Wang, C.; Zhou, T.; Jing, S.; Wu, Y.; Zhao, C. In situ synthesis of ZnO nanostructures on a zinc substrate assisted with mixed cationic/anionic surfactants. J. Alloys Compd 2009, 477, 364–369.
[21]
Ni, Y.; Wu, G.; Zhang, X.; Cao, X.; Hu, G.; Tao, A.; Yang, Z.; Wei, X. Hydrothermal preparation, characterization and property research of flowerlike ZnO nanocrystals built up by nanoflakes. Mater. Res. Bull 2008, 43, 2919–2928.
[22]
Maiti, U.N.; Nandy, S.; Karan, S.; Mallik, B.; Chattopadhyay, K.K. Enhanced optical and field emission properties of CTAB-assisted hydrothermal grown ZnO nanorods. Appl. Surf. Sci 2008, 254, 7266–7271.
[23]
Steinmiller, E.M.P.; Choi, K.-S. Anodic construction of lamellar structured ZnO films using basic media via interfacial surfactant templating. Langmuir 2007, 23, 12710–12715.
[24]
Poyraz, A.S.; Dag, O. Role of organic and inorganic additives on the assembly of CTAB-P123 and the morphology of mesoporous silica particles. J. Phys. Chem. C 2009, 113, 18596–18607.
[25]
Wang, Y.D.; Zhang, S.; Ma, C.L.; Li, H.D. Synthesis and room temperature photoluminescence of ZnO/CTAB ordered layered nanocomposite with flake-like architecture. J. Lumin 2007, 126, 661–664.
[26]
Denoyel, R.; Keene, M.T.J.; Llewellyn, P.L.; Rouquerol, J. Thermal methods in the synthesis of new ordered mesoporous adsorbents. J. Therm. Anal. Calorim 1999, 56, 261–266.
[27]
Prasad, V.; D’Souza, C.; Yadav, D.; Shaikh, A.J.; Vigneshwaran, N. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectrochim Acta A 2006, 65, 173–178.
[28]
Drmosh, Q.A.; Gondal, M.A.; Yamani, Z.H.; Saleh, T.A. Spectroscopic characterization approach to study surfactants effect on ZnO2 nanoparticles synthesis by laser ablation process. Appl. Surf. Sci 2010, 256, 4661–4666.
[29]
Al-Gaashani, R.; Radiman, S.; Tabet, N.; Daud, A.R. Effect of microwave power on the morphology and optical property of zinc oxide nano-structures prepared via a microwave-assisted aqueous solution method. Mater. Chem. Phys 2011, 125, 846–852.
[30]
Wu, L.; Wu, Y.; Lü, W. Preparation of ZnO Nanorods and optical characterizations. Phys. E 2005, 28, 76–82.
[31]
Xiong, G.; Luo, L.; Li, C.; Yang, X. Synthesis of mesoporous ZnO (m-ZnO) and catalytic performance of the Pd/m-ZnO catalyst for methanol steam reforming. Energy Fuels 2009, 23, 1342–1346.
[32]
Hussein, M.Z.; Al Ali, S.H.; Zainal, Z.; Hakim, M.N. Development of antiproliferative nanohybrid compound with controlled release property using ellagic acid as the active agent. Int. J. Nanomed 2011, 6, 1373–1383.
[33]
Hu, J.-S.; Ren, L.-L.; Guo, Y.-G.; Liang, H.-P.; Cao, A.-M.; Wan, L.-J.; Bai, C.-L. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew. Chem. Int. Edit 2005, 44, 1269–1273.
[34]
Wurster, D.E.; Oh, E.; Wang, J.C.T. Determination of the mechanism for the decrease in zinc oxide surface area upon high-temperature drying. J. Pharm. Sci 1995, 84, 1301–1307.
[35]
Zhou, X.; Hu, Z.; Fan, Y.; Chen, S.; Ding, W.; Xu, N. Microspheric organization of multilayered ZnO nanosheets with hierarchically porous structures. J. Phys. Chem. C 2008, 112, 11722–11728.