全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of Btg2 in the Progression of a PDGF-Induced Oligodendroglioma Model

DOI: 10.3390/ijms131114667

Keywords: glioma progression, tumor suppressor, high grade oligodendroglioma

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tumor progression is a key aspect in oncology. Not even the overexpression of a powerful oncogenic stimulus such as platelet derived growth factor-B (PDGF-B) is sufficient per se to confer full malignancy to cells. In previous studies we showed that neural progenitors overexpressing PDGF-B need to undergo progression to acquire the capability to give rise to secondary tumor following transplant. By comparing the expression profile of PDGF-expressing cells before and after progression, we found that progressed tumors consistently downregulate the expression of the antiproliferative gene Btg2. We therefore tested whether the downregulation of Btg2 is sufficient and necessary for glioma progression with loss and gain of function experiments. Our results show that downregulation of Btg2 is not sufficient but is necessary for tumor progression since the re-introduction of Btg2 in fully progressed tumors dramatically impairs their gliomagenic potential. These results suggest an important role of Btg2 in glioma progression. Accordingly with this view, the analysis of public datasets of human gliomas showed that reduced level of Btg2 expression correlates with a significantly worse prognosis.

References

[1]  Appolloni, I.; Calzolari, F.; Tutucci, E.; Caviglia, S.; Terrile, M.; Corte, G.; Malatesta, P. PDGF-B induces a homogeneous class of oligodendrogliomas from embryonic neural progenitors. Int. J. Cancer 2009, 124, 2251–2259.
[2]  Calzolari, F.; Appolloni, I.; Tutucci, E.; Caviglia, S.; Terrile, M.; Corte, G.; Malatesta, P. Tumor progression and oncogene addiction in a PDGF-B-induced model of gliomagenesis. Neoplasia 2008, 10, 1373–1382.
[3]  Furnari, F.B.; Fenton, T.; Bachoo, R.M.; Mukasa, A.; Stommel, J.M.; Stegh, A.; Hahn, W.C.; Ligon, K.L.; Louis, D.N.; Brennan, C.; et al. Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev 2007, 21, 2683–2710.
[4]  Yin, D.; Ogawa, S.; Kawamata, N.; Tunici, P.; Finocchiaro, G.; Eoli, M.; Ruckert, C.; Huynh, T.; Liu, G.; Kato, M.; et al. High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol. Cancer Res 2009, 7, 665–677.
[5]  Zheng, H.; Ying, H.; Yan, H.; Kimmelman, A.C.; Hiller, D.J.; Chen, A.J.; Perry, S.R.; Tonon, G.; Chu, G.C.; Ding, Z.; et al. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 2008, 455, 1129–1133.
[6]  Malatesta, P.; Gotz, M.; Barsacchi, G.; Price, J.; Zoncu, R.; Cremisi, F. PC3 overexpression affects the pattern of cell division of rat cortical precursors. Mech. Dev 2000, 90, 17–28.
[7]  Tirone, F. The gene PC3 (TIS21/BTG2), prototype member of the PC3/BTG/TOB family: Regulator in control of cell growth, differentiation, and DNA repair? J. Cell Physiol 2001, 187, 155–165.
[8]  Coppola, V.; Musumeci, M.; Patrizii, M.; Cannistraci, A.; Addario, A.; Maugeri-Sacca, M.; Biffoni, M.; Francescangeli, F.; Cordenonsi, M.; Piccolo, S.; et al. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Oncogene 2012, doi:10.1038/onc.2012.194.
[9]  Wei, S.; Hao, C.; Li, X.; Zhao, H.; Chen, J.; Zhou, Q. Effects of BTG2 on proliferation inhibition and anti-invasion in human lung cancer cells. Tumour Biol 2012, 33, 1223–1230.
[10]  Takahashi, F.; Chiba, N.; Tajima, K.; Hayashida, T.; Shimada, T.; Takahashi, M.; Moriyama, H.; Brachtel, E.; Edelman, E.J.; Ramaswamy, S.; et al. Breast tumor progression induced by loss of BTG2 expression is inhibited by targeted therapy with the ErbB/HER inhibitor lapatinib. Oncogene 2011, 30, 3084–3095.
[11]  Farioli-Vecchioli, S.; Tanori, M.; Micheli, L.; Mancuso, M.; Leonardi, L.; Saran, A.; Ciotti, M.T.; Ferretti, E.; Gulino, A.; Pazzaglia, S.; et al. Inhibition of medulloblastoma tumorigenesis by the antiproliferative and pro-differentiative gene PC3. Faseb. J 2007, 21, 2215–2225.
[12]  Riley, T.; Sontag, E.; Chen, P.; Levine, A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol 2008, 9, 402–412.
[13]  Appolloni, I.; Calzolari, F.; Barilari, M.; Terrile, M.; Daga, A.; Malatesta, P. Antagonistic modulation of gliomagenesis by Pax6 and Olig2 in PDGF-induced oligodendroglioma. Int. J. Cancer 2012, 131, E1078–E1087.
[14]  Rasband, W.S. ImageJ Home Page; U.S. National Institutes of 13 Health: Bethesda, MD, USA.
[15]  Lange, C.; Huttner, W.B.; Calegari, F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 2009, 5, 320–331.
[16]  Quelle, D.E.; Ashmun, R.A.; Shurtleff, S.A.; Kato, J.Y.; Bar-Sagi, D.; Roussel, M.F.; Sherr, C.J. Overexpression of mouse d-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 1993, 7, 1559–1571.
[17]  National Cancer Institute. REMBRANDT Home Page, 2005. Available online: http://rembrandt.nci.nih.gov , accessed on 26 September 2012.
[18]  Gambini, E.; Reisoli, E.; Appolloni, I.; Gatta, V.; Campadelli-Fiume, G.; Menotti, L.; Malatesta, P. Replication-competent herpes simplex virus retargeted to HER2 as therapy for high-grade glioma. Mol. Ther 2012, 20, 994–1001.
[19]  Terrile, M.; Appolloni, I.; Calzolari, F.; Perris, R.; Tutucci, E.; Malatesta, P. PDGF-B-driven gliomagenesis can occur in the absence of the proteoglycan NG2. BMC Cancer 2010, 10, 550.
[20]  Gavazzo, P.; Vella, S.; Marchetti, C.; Nizzari, M.; Cancedda, R.; Pagano, A. Acquisition of neuron-like electrophysiological properties in neuroblastoma cells by controlled expression of NDM29 ncRNA. J. Neurochem 2011, 119, 989–1001.
[21]  Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 2004, 5, R80.
[22]  Irizarry, R.A.; Bolstad, B.M.; Collin, F.; Cope, L.M.; Hobbs, B.; Speed, T.P. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31, e15.
[23]  Massone, S.; Ciarlo, E.; Vella, S.; Nizzari, M.; Florio, T.; Russo, C.; Cancedda, R.; Pagano, A. NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid beta secretion. Biochim. Biophys. Acta 2012, 1823, 1170–1177.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133