全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Inverse Relationship Links Temperature and Substrate Apparent Affinity in the Ion-Coupled Cotransporters rGAT1 and KAAT1

DOI: 10.3390/ijms131215565

Keywords: transporter, temperature, affinity, rGAT1, KAAT1, electrophysiology

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effects of temperature on the operation of two ion-coupled cotransporters of the SLC6A family, namely rat GAT1 (SLC6A1) and KAAT1 (SLC6A19) from Manduca sexta, have been studied by electrophysiological means in Xenopus laevis oocytes expressing these proteins. The maximal transport-associated current ( I max) and the apparent substrate affinity ( K 05) were measured. In addition to the expected increase in transport rate ( Q 10 = 3–6), both transporters showed greater K 05 values ( i.e., a decrease in apparent affinity) at higher temperatures. The transport efficiency, estimated as I max/ K 05, increased at negative potentials in both transporters, but did not show statistically significant differences with temperature. The observation that the apparent substrate affinity is inversely related to the transport rate suggests a kinetic regulation of this parameter. Furthermore, the present results indicate that the affinities estimated at room temperature for mammalian cotransporters may not be simply extrapolated to their physiological operating conditions.

References

[1]  Parent, L.; Supplisson, S.; Loo, D.D.F.; Wright, E.M. Electrogenic properties of the cloned Na+/glucose transporter: I. Voltage-clamp studies. J. Membr. Biol 1992, 125, 49–62.
[2]  Forster, I.C.; Virkki, L.; Bossi, E.; Murer, H.; Biber, J. Electrogenic kinetics of a mammalian intestinal type IIb Na+/Pi cotransporter. J. Membr. Biol 2006, 212, 177–190.
[3]  Pérez-Siles, G.; Nú?ez, E.; Morreale, A.; Jiménez, E.; Leo-Macías, A.; Pita, G.; Cherubino, F.; Sangaletti, R.; Bossi, E.; Ortìz, á.; et al. An aspartate residue in the external vestibule of glycine transporter 2 (GLYT2) controls cation access and transport coupling. Biochem. J. 2012, 442, 323–334.
[4]  Mager, S.; Kleinberger-Doron, N.; Keshet, G.I.; Davidson, N.; Kanner, B.I.; Lester, H.A. Ion binding and permeation at the GABA transporter GAT1. J. Neurosci 1996, 16, 5405–5414.
[5]  Hazama, A.; Loo, D.D.F.; Wright, E.M. Presteady-state currents of the rabbit Na+/glucose cotransporter (SGLT1). J. Membr. Biol 1997, 155, 175–186.
[6]  Binda, F.; Bossi, E.; Giovannardi, S.; Forlani, G.; Peres, A. Temperature effects on the presteady-state and transport-associated currents of GABA cotransporter rGAT1. FEBS Lett 2002, 512, 303–307.
[7]  Hilgemann, D.W.; Lu, C.-C. GAT1 (GABA:Na+:Cl?) cotransport function. Database reconstruction with an alternating access model. J. Gen. Physiol 1999, 114, 459–475.
[8]  Beckman, M.L.; Quick, M.W. Substrates and temperature differentiate ion flux from serotonin flux in a serotonin transporter. Neuropharmacology 2001, 40, 526–535.
[9]  Bacconi, A.; Ravera, S.; Virkki, L.V.; Murer, H.; Forster, I.C. Temperature dependence of steady-state and presteady-state kinetics of a type IIb Na+/Pi cotransporter. J. Membr. Biol 2007, 215, 81–92.
[10]  Mager, S.; Cao, Y.; Lester, H.A. Measurement of transient currents from neurotransmitter transporters expressed in Xenopus oocytes. Methods Enzymol 1998, 296, 551–566.
[11]  Bossi, E.; Centinaio, E.; Castagna, M.; Giovannardi, S.; Vincenti, S.; Sacchi, V.F.; Peres, A. Ion binding and permeation through the lepidopteran amino acid transporter KAAT1 expressed in Xenopus oocytes. J. Physiol 1999, 515, 729–742.
[12]  Bossi, E.; Cherubino, F.; Margheritis, E.; Oyadeyi, A.S.; Vollero, A.; Peres, A. Temperature effects on the kinetic properties of the rabbit intestinal oligopeptide cotransporter PepT1. Pflugers Arch 2012, 464, 183–191.
[13]  Fesce, R.; Giovannardi, S.; Binda, F.; Bossi, E.; Peres, A. The relation between charge movement and transport-associated currents in the GABA cotransporter rGAT1. J. Physiol 2002, 545, 739–750.
[14]  Peres, A.; Giovannardi, S.; Bossi, E.; Fesce, R. Electrophysiological insights on the mechanism of ion-coupled cotransporters. News Physiol. Sci 2004, 19, 80–84.
[15]  Giovannardi, S.; Fesce, R.; Bossi, E.; Binda, F.; Peres, A. Cl? effects on the function of the GABA cotransporter rGAT1 preserve the mutual relation between transient and transport currents. CMLS 2003, 60, 550–556.
[16]  Soragna, A.; Bossi, E.; Giovannardi, S.; Pisani, R.; Peres, A. Relations between substrate affinities and charge equilibration rates in the GABA cotransporter rGAT1. J. Physiol 2005, 562, 333–345.
[17]  Castagna, M.; Shayakul, C.; Trotti, D.; Sacchi, V.F.; Harvey, W.R.; Hediger, M.A. Cloning and characterization of a potassium-coupled amino acid transporter. Proc. Natl. Acad. Sci. USA 1998, 95, 5395–5400.
[18]  Castagna, M.; Bossi, E.; Sacchi, V.F. Molecular physiology of the insect K-activated amino acid transporter 1 (KAAT1) and cation-anion activated amino acid transporter/channel 1 (CAATCH1) in the light of the structure of the homologous protein LeuT. Ins. Mol. Biol 2009, 18, 265–279.
[19]  Mager, S.; Naeve, J.; Quick, M.; Labarca, C.; Davidson, N.; Lester, H.A. Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 1993, 10, 177–188.
[20]  Forlani, G.; Bossi, E.; Ghirardelli, R.; Giovannardi, S.; Binda, F.; Bonadiman, L.; Ielmini, L.; Peres, A. Mutation K448E in the external loop 5 of rGAT1 transporter induces pH sensitivity and altered substrates interactions. J. Physiol 2001, 536, 479–494.
[21]  Boudko, D.Y.; Kohn, A.B.; Meleshkevitch, E.A.; Dasher, M.K.; Seron, T.J.; Stevens, B.R.; Harvey, W.R. Ancestry and progeny of nutrient amino acid transporters. Proc. Natl. Acad. Sci. USA 2005, 102, 1360–1365.
[22]  Camargo, S.M.R.; Makrides, V.; Virkki, L.V.; Forster, I.C.; Verrey, F. Steady-state kinetic characterization of the mouse B0AT1 sodium-dependent neutral amino acid transporter. Pflugers Arch 2005, 451, 338–348.
[23]  Soragna, A.; Mari, S.; Peres, A.; Pisani, R.; Castagna, M.; Sacchi, V.F.; Bossi, E. Structural domains involved in substrate selectivity in two neutral amino acid transporters. Am. J. Physiol. Cell Physiol 2004, 287, C754–C761.
[24]  Miszner, A.; Peres, A.; Castagna, M.; Betté, S.; Giovannardi, S.; Cherubino, F.; Bossi, E. Structural and functional basis of amino acid specificity in the invertebrate cotransporter KAAT1. J. Physiol 2007, 581, 899–913.
[25]  Gonzales, A.L.; Lee, W.; Spencer, S.R.; Oropeza, R.A.; Chapman, J.V.; Ku, J.Y.; Eskandari, S. Turnover rate of the gamma-aminobutyric acid transporter GAT1. J. Membr. Biol 2007, 220, 33–51.
[26]  Stryer, L. Biochemistry, 3rd. Ed ed.; W.H. Freeman and Company: New York, NY, USA; p. 1988.
[27]  Dow, J.A.T.; Peacock, J.M. Microelectrode evidence for the electrical isolation of goblet cell cavities in Manduca sexta middle midgut. J. Exp. Biol 1989, 143, 101–114.
[28]  Bossi, E.; Fabbrini, M.S.; Ceriotti, A. Exogenous protein expression in Xenopus Laevis oocyte, basic procedure. Methods Mol. Biol 2007, 375, 107–131.
[29]  Zeuthen, T.; MacAulay, N. Cotransport of water by Na+-K+-2Cl? cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2. J. Physiol 2012, 590, 1139–1154.
[30]  De Oliveira, A.M.; Shoemaker, H.; Segonzac, A.; Langer, S.Z. Differences in the temperature dependence of drug interaction with the noradrenaline and serotonin transporters. Neuropharmacology 1989, 28, 823–828.
[31]  Sala-Rabanal, M.; Loo, D.D.F.; Hirayama, B.A.; Turk, E.; Wright, E.M. Molecular interactions between dipeptides, drugs and the human intestinal H+/oligopeptide cotransporter, hPEPT1. J. Physiol 2006, 574, 149–166.
[32]  Renna, M.D.; Sangaletti, R.; Bossi, E.; Cherubino, F.; Kottra, G.; Peres, A. Unified modeling of the mammalian and fish proton-dependent oligopeptide transporter PepT1. Channels 2011, 5, 89–99.
[33]  Nussberger, S.; Steel, A.; Trotti, D.; Romero, M.F.; Boron, W.F.; Hediger, M.A. Symmetry of H+ binding to the intra- and extracellular side of the H+-coupled oligopeptide cotransporter PepT1. J. Biol. Chem 1997, 272, 7777–7785.
[34]  Richerson, G.B.; Wu, Y. Dynamic equilibrium of neurotransmitter transporters: Not just for reuptake anymore. J. Neurophysiol 2003, 90, 1363–1374.
[35]  Richerson, G.B.; Wu, Y. Role of the GABA transporter in epilepsy. Adv. Exp. Med. Biol 2004, 548, 76–91.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133