全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phosphoproteomics and Lung Cancer Research

DOI: 10.3390/ijms131012287

Keywords: lung cancer, mass spectrometry, phosphoproteomics, post-translational modification, signaling pathway

Full-Text   Cite this paper   Add to My Lib

Abstract:

Massive evidence suggests that genetic abnormalities contribute to the development of lung cancer. These molecular abnormalities may serve as diagnostic, prognostic and predictive biomarkers for this deadly disease. It is imperative to search these biomarkers in different tumorigenesis pathways so as to provide the most appropriate therapy for each individual patient with lung malignancy. Phosphoproteomics is a promising technology for the identification of biomarkers and novel therapeutic targets for cancer. Thousands of proteins interact via physical and chemical association. Moreover, some proteins can covalently modify other proteins post-translationally. These post-translational modifications ultimately give rise to the emergent functions of cells in sequence, space and time. Phosphoproteomics clinical researches imply the comprehensive analysis of the proteins that are expressed in cells or tissues and can be employed at different stages. In addition, understanding the functions of phosphorylated proteins requires the study of proteomes as linked systems rather than collections of individual protein molecules. In fact, proteomics approaches coupled with affinity chromatography strategies followed by mass spectrometry have been used to elucidate relevant biological questions. This article will discuss the relevant clues of post-translational modifications, phosphorylated proteins, and useful proteomics approaches to identify molecular cancer signatures. The recent progress in phosphoproteomics research in lung cancer will be also discussed.

References

[1]  Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Word, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin 2011, 61, 69–90.
[2]  Cho, W.C.; Yip, T.T.; Cheng, W.W.; Au, J.S. Serum amyloid A is elevated in the serum of lung cancer patients with poor prognosis. Br. J. Cancer 2010, 102, 1731–1735.
[3]  Cho, W.C. Proteomics and translational medicine: Molecular biomarkers for cancer diagnosis, prognosis and prediction of therapy outcome. Expert Rev. Proteomics 2011, 8, 1–4.
[4]  Tan, F.; Jiang, Y.; Sun, N.; Chen, Z.; Lv, Y.; Shao, K.; Li, N.; Qiu, B.; Gao, Y.; Li, B.; et al. Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis. Mol. Cell Proteomics 2012, 11, doi:10.1074/mcp.M111.008821.
[5]  Wang, C.I.; Chien, K.Y.; Wang, C.L.; Liu, H.P.; Cheng, C.C.; Chang, Y.S.; Yu, J.S.; Yu, C.J. Quantitative proteomics reveals regulation of KPNA2 and its potential novel cargo proteins in non-small cell lung cancer. Mol. Cell Proteomics 2012, doi:10.1074/mcp.M111.016592.
[6]  Kettenbach, A.N.; Gerber, S.A. Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: Application to general and phosphotyrosine-specific phosphoproteomics experiments. Anal. Chem 2011, 83, 7635–7644.
[7]  Wright, P.C.; Noirel, J.; Ow, S.Y.; Fazeli, A. A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations. Theriogenology 2012, 77, 738–765.
[8]  Zhong, Y.; Hyung, S.J.; Ruotolo, B.T. Ion mobility-mass spectrometry for structural proteomics. Expert Rev. Proteomics 2012, 9, 47–58.
[9]  Schirle, M.; Bantscheff, M.; Kuster, B. Mass spectrometry-based proteomics in preclinical drug discovery. Chem. Biol 2012, 19, 72–84.
[10]  Bouwman, J.; Vogels, J.T.; Wopereis, S.; Rubingh, C.M.; Bijlsma, S.; van Ommen, B. Visualization and identification of health space, based on personalized molecular phenotype and treatment response to relevant underlying biological processes. BMC Med. Genomics 2012, 5, doi:10.1186/1755-8794-5-1.
[11]  Catusse, J.; Meinhard, J.; Job, C.; Strub, J.M.; Fischer, U.; Pestsova, E.; Westhoff, P.; van Dorsselaer, A.; Job, D. Proteomics reveals potential biomarkers of seed vigor in sugarbeet. Proteomics 2011, 11, 1569–1580.
[12]  López, E.; Wesselink, J.J.; López, I.; Mendieta, J.; Gómez-Puertas, P.; Munoz, S.R. Technical phosphoproteomic and bioinformatic tools useful in cancer research. J. Clin. Bioinforma 2011, 1, doi:10.1186/2043-9113-1-26.
[13]  López, E.; López, I.; Sequí, J.; Ferreira, A. Discovering and validating unknown phospho-sites from p38 and HuR protein kinases in vitro by phosphoproteomic and bioinformatic tools. J. Clin. Bioinforma 2011, 1, doi:10.1186/2043-9113-1-16.
[14]  López, E.; López, I.; Ferreira, A.; Sequí, J. Clinical and technical phosphoproteomic research. Proteome Sci 2011, 9, doi:10.1186/1477-5956-9-27.
[15]  Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Company. In Molecular Cell Biology, 4th ed ed.; W.H. Freeman: New York, NY, USA, 2002.
[16]  Stryer, L. Biochemistry, 4th ed ed.; W.H. Freeman: New York, NY, USA, 1995.
[17]  Bauer, U.T.; Daujat, S.; Nielsen, S.J.; Nightingale, K.; Kouzarides, T. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 2002, 33, 39–44.
[18]  Huang, W.J.; Wang, Y.C.; Chao, S.W.; Yang, C.Y.; Chen, L.C.; Lin, M.H.; Hou, W.C.; Chen, M.Y.; Lee, T.L.; Yang, P.; et al. Synthesis and biological evaluation of ortho-Aryl N-Hydroxycinnamides as potent histone deacetylase (HDAC) 8 isoform-selective inhibitors. ChemMedChem 2012, doi:10.1002/cmdc.201200300.
[19]  Song, J.S.; Kim, Y.S.; Kim, D.K.; Park, S.I.; Jang, S.J. Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol. Int 2012, 62, 182–190.
[20]  Shah, A.; Singh, H.; Sachdev, V.; Lee, J.; Yotsukura, S.; Salgia, R.; Bharti, A. Differential serum level of specific haptoglobin isoforms in small cell lung cancer. Curr. Proteomics 2010, 7, 49–65.
[21]  Greulich, H.; Kaplan, B.; Mertins, P.; Chen, T.H.; Tanaka, K.E.; Yun, C.H.; Zhang, X.; Lee, S.H.; Cho, J.; Ambrogio, L.; et al. Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2. Proc. Natl. Acad. Sci. USA 2012, 109, 14476–14481.
[22]  Vasseur, J.A.; Goetz, J.A.; Alley, W.R., Jr.; Novotny, M.V. Smoking and lung cancer-induced changes in N-glycosylation of blood serum proteins. Glycobiology 2012, doi:10.1093/glycob/cws108.
[23]  Andreeva, A.V.; Kutuzov, M.A. Cadherin 13 in cancer. Genes Chromosomes Cancer 2010, 49, 775–790.
[24]  Scherf, D.B.; Sarkisyan, N.; Jacobsson, H.; Claus, R.; Bermejo, J.L.; Peil, B.; Gu, L.; Muley, T.; Meister, M.; Dienemann, H.; et al. Epigenetic screen identifies genotype-specific promoter DNA methylation and oncogenic potential of CHRNB4. Oncogene 2012, doi:10.1038/onc.2012,344.
[25]  Takezawa, K.; Pirazzoli, V.; Arcila, M.E.; Nebhan, C.A.; Song, X.; de Stanchina, E.; Ohashi, K.; Janjigian, Y.Y.; Spitzler, P.J.; Melnick, M.A.; et al. HER2 amplification: A potential mechanism of acquired resistance to EGFR inhibition in EGFR mutant lung cancers that lack the second-site EGFR T790M mutation. Cancer Discov 2012, doi:10.1158/2159-8290.
[26]  Neumann, H.; Hazen, J.L.; Weinstein, J.; Mehl, R.A.; Chin, J.W. Genetically encoding protein oxidative damage. J. Am. Chem. Soc 2008, 130, 4028–4033.
[27]  Liu, Z.; Zanata, S.M.; Kim, J.; Peterson, M.A.; di Vizio, D.; Chirieac, L.R.; Pyne, S.; Agostini, M.; Freeman, M.R.; Loda, M. The ubiquitin-specific protease USP2a prevents endocytosis-mediated EGFR degradation. Oncogene 2012, doi:10.1038/onc.2012.188.
[28]  Lopez, E.; Wang, X.; Madero, L. Functional phosphoproteomic mass spectrometry-based approaches. Clin. Transl. Med 2012, 1, doi:10.1186/2001-1326-1-20.
[29]  Hubbard, M.J.; Cohen, P. On target with a new mechanism for the regulation of protein-phosphorylation trends. Biochem. Sci 1993, 18, 172–177.
[30]  Lenaz, G.; Genova, M.L. Supramolecular organisation of the mitochondrial respiratory chain: A new challenge for the mechanism and control of oxidative phosphorylation. Adv. Exp. Med. Biol 2012, 748, 107–144.
[31]  Mann, M.; Ong, S.E.; Gr?nborg, M.; Steen, H.; Jensen, O.N.; Pandey, A. Analysis of protein phosphorylation using mass spectrometry: Deciphering the phosphoproteome. Trends Biotechnol 2002, 20, 261–268.
[32]  Mann, M.; Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol 2003, 21, 255–261.
[33]  Yarbro, J.W. Oncogenes and cancer suppressor genes. Semin. Oncol. Nurs 1992, 8, 30–39.
[34]  Martin, K.K.; Pilkington, G.J. Nm23: An invasion suppressor gene in CNS tumours? Anticancer Res 1998, 18, 919–926.
[35]  Senderowicz, A.M. Cell cycle modulators for the treatment of lung malignancies. Clin. Lung Cancer 2003, 5, 158–168.
[36]  Ha, G.H.; Baek, K.H.; Kim, H.S.; Jeong, S.J.; Kim, C.M.; McKeon, F.; Lee, C.W. p53 activation in response to mitotic spindle damage requires signaling via BubR1-mediated phosphorylation. Cancer Res 2007, 67, 7155–7164.
[37]  Reddy, E.P.; Korapati, A.; Chaturvedi, P.; Rane, S. IL-3 signaling and the role of Src kinases, JAKs and STATs: A covert liaison unveiled. Oncogene 2000, 19, 2532–2547.
[38]  Rane, S.G.; Reddy, E.P. JAKs, STATs and Src kinases in hematopoiesis. Oncogene 2002, 21, 3334–3358.
[39]  Ralph, S.J. An update on malignant melanoma vaccine research: Insights into mechanisms for improving the design and potency of melanoma therapeutic vaccines. Am. J. Clin. Dermatol 2007, 8, 123–141.
[40]  Gaestel, M.; Mengel, A.; Bothe, U.; Asadullah, K. Protein kinases as small molecule inhibitor targets in inflammation. Curr. Med. Chem 2007, 14, 2214–2234.
[41]  Giamas, G.; Stebbing, J.; Vorgias, C.E.; Knippschild, U. Protein kinases as targets for cancer treatment. Pharmacogenomics 2007, 8, 1005–1016.
[42]  Knowles, M.A. Novel therapeutic targets in bladder cancer: Mutation and expression of FGF receptors. Future Oncol 2008, 4, 71–83.
[43]  Jensen, O.N. Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol 2004, 8, 33–41.
[44]  Delom, F.; Chevet, E. Phosphoprotein analysis: From proteins to proteomes. Proteome Sci 2006, 4, doi:10.1186/1477-5956-4-15.
[45]  Ficarro, S.B.; McCleland, M.L.; Stukenberg, P.T.; Burke, D.J.; Ross, M.M.; Shabanowitz, J.; Hunt, D.F.; White, F.M. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol 2002, 20, 301–305.
[46]  Gruhler, A.; Olsen, J.V.; Mohammed, S.; Mortensen, P.; Faergeman, N.J.; Mann, M.; Jensen, O.N. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics 2005, 4, 310–327.
[47]  Li, X.; Gerber, S.A.; Rudner, A.D.; Beausoleil, S.A.; Haas, W.; Villén, J.; Elias, J.E.; Gygi, S.P. Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae. J. Proteome Res 2007, 6, 1190–1197.
[48]  Larsen, M.R.; Thingholm, T.E.; Jensen, O.N.; Roepstorff, P.; Jorgensen, T.J. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell Proteomics 2005, 4, 873–886.
[49]  Zhang, X.; Ye, J.; Jensen, O.N.; Roepstorff, P. Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent IMAC enrichment. Mol. Cell. Proteomics 2007, 6, 2032–2042.
[50]  Thingholm, T.E.; Jensen, O.N.; Robinson, P.J.; Larsen, M.R. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol. Cell. Proteomics 2008, 7, 661–671.
[51]  Kjeldsen, F.; Giessing, A.M.; Ingrell, C.R.; Jensen, O.N. Peptide sequencing and characterization of post-translational modifications by enhanced ion-charging and liquid chromatography electron-transfer dissociation tandem mass spectrometry. Anal. Chem 2007, 79, 9243–9252.
[52]  Gafken, P.R.; Lampe, P.D. Methodologies for characterizing phosphoproteins by mass spectrometry. Cell Commun. Adhes 2006, 13, 249–262.
[53]  Larsen, M.R.; Graham, M.E.; Robinson, P.J.; Roepstorff, P. Improved detection of hydrophilic phosphopeptides using graphite powder microcolumns and mass spectrometry: Evidence for in vivo doubly phosphorylated dynamin I and dynamin III. Mol. Cell. Proteomics 2004, 3, 456–465.
[54]  Gobom, J.; Nordhoff, E.; Mirgorodskaya, E.; Ekman, R.; Roepstorff, P. Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom 1999, 34, 105–116.
[55]  Jensen, S.S.; Larsen, M.R. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun. Mass Spectrom 2007, 21, 3635–3645.
[56]  Engholm-Keller, K.; Larsen, M.R. Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds—Applications in acidic modification-specific proteomics. J. Proteomics 2011, 75, 317–328.
[57]  Thingholm, T.E.; Jensen, O.N.; Larsen, M.R. Analytical strategies for phosphoproteomics. Proteomics 2009, 9, 1451–1468.
[58]  Thingholm, T.E.; Jensen, O.N.; Larsen, M.R. Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis. Methods Mol. Biol 2009, 527, 67–78.
[59]  Gruhler, A.; Schulze, W.X.; Matthiesen, R.; Mann, M.; Jensen, O.N. Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol. Cell Proteomics 2005, 4, 1697–1709.
[60]  Ye, J.; Zhang, X.; Young, C.; Zhao, X.; Hao, Q.; Cheng, L.; Jensen, O.N. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples. J. Proteome Res 2010, 9, 3561–3573.
[61]  Sugiyama, N.; Masuda, T.; Shinoda, K.; Nakamura, A.; Tomita, M.; Ishihama, Y. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol. Cell. Proteomics 2007, 6, 1103–1109.
[62]  Gobom, J.; Mirgorodskaya, E.; Nordhoff, E.; Hojrup, P.; Roepstorff, P. Use of vapor-phase acid hydrolysis for mass spectrometric peptide mapping and protein identification. Anal. Chem 1999, 71, 919–927.
[63]  Larsen, M.R.; H?jrup, P.; Roepstorff, P. Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol. Cell. Proteomics 2005, 4, 107–119.
[64]  Shevchenko, A.; Wilm, M.; Vorm, O.; Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem 1996, 68, 850–858.
[65]  Larsen, M.R. Mass spectrometric characterization of posttranslationally modified proteins-phosphorylation. Methods Mol. Biol 2004, 251, 245–262.
[66]  Song, C.; Ye, M.; Liu, Z.; Cheng, H.; Jiang, X.; Han, G.; Songyang, Z.; Tan, Y.; Wang, H.; Ren, J.; et al. Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol. Cell. Proteomics 2012, doi:10.1074/mcp.M111.012625.
[67]  Han, G.; Ye, M.; Liu, H.; Song, C.; Sun, D.; Wu, Y.; Jiang, X.; Chen, R.; Wang, C.; Wang, L.; et al. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 2010, 31, 1080–1089.
[68]  Worthington, J.; Cutillas, P.R.; Timms, J.F. IMAC/TiO(2) enrich for peptide modifications other than phosphorylation: Implications for chromatographic choice and database searching in phosphoproteomics. Proteomics 2011, 11, 4583–4587.
[69]  Speicher, K.D.; Kolbas, O.; Harper, S.; Speicher, D.W. Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J. Biomol. Tech 2000, 11, 74–86.
[70]  Corthals, G.L.; Wasinger, V.C.; Hochstrasser, D.F.; Sanchez, J.C. The dynamic range of protein expression: A challenge for proteomic research. Electrophoresis 2000, 21, 1104–1115.
[71]  Gr?nborg, M.; Kristiansen, T.Z.; Stensballe, A.; Andersen, J.S.; Ohara, O.; Mann, M.; Jensen, O.N.; Pandey, A. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol. Cell. Proteomics 2002, 1, 517–527.
[72]  Zhang, Z.Y. Functional studies of protein tyrosine phosphatases with chemical approaches. Biochim. Biophys. Acta 2005, 1754, 100–107.
[73]  Klumpp, S.; Krieglstein, J. Phosphorylation and dephosphorylation of histidine residues in proteins. Eur. J. Biochem 2002, 269, 1067–1071.
[74]  Raggiaschi, R.; Gotta, S.; Terstappen, G.C. Phosphoproteome analysis. Biosci. Rep 2005, 25, 33–44.
[75]  Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal. Chem 1988, 60, 2299–2301.
[76]  Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64–72.
[77]  Annan, R.S.; Carr, S.A. Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry. Anal. Chem 1996, 68, 3413–3421.
[78]  Steen, H.; Kuster, B.; Mann, M. Quadrupole time-of-flight versus triple quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J. Mass Spectrom 2001, 36, 782–790.
[79]  Cooper, H.J.; H?kansson, K.; Marshall, A.G. The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev 2005, 24, 201–222.
[80]  Wu, S.L.; Hühmer, A.F.; Hao, Z.; Karger, B.L. On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications. J. Proteome Res 2007, 6, 4230–4244.
[81]  Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science 2002, 298, 1912–1934.
[82]  Beausoleil, S.A.; Jedrychowski, M.; Schwartz, D.; Elias, J.E.; Villén, J.; Li, J.; Cohn, M.A.; Cantley, L.C.; Gygi, S.P. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 2004, 101, 12130–12135.
[83]  Biemann, K. Contribution of mass-spectrometry to peptide and protein-structure. Biomed. Environ. Mass Spectrom 1988, 16, 99–111.
[84]  Roepstorff, P.; Fohlman, J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom 1984, 11, doi:10.1002/bms.1200111109.
[85]  Ong, S.E.; Mann, M. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol 2005, 1, 252–262.
[86]  Ong, S.E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D.B.; Steen, H.; Pandey, A.; Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, 376–386.
[87]  Gruhler, S.; Kratchmarova, I. Stable isotope labeling by amino acids in cell culture (SILAC). Methods Mol. Biol 2008, 424, 101–111.
[88]  Ballif, B.A.; Roux, P.P.; Gerber, S.A.; MacKeigan, J.P.; Blenis, J.; Gygi, S.P. Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc. Natl. Acad. Sci. USA 2005, 102, 667–672.
[89]  Ross, P.L.; Huang, Y.N.; Marchese, J.N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 2004, 3, 1154–1169.
[90]  Sachon, E.; Mohammed, S.; Bache, N.; Jensen, O.N. Phosphopeptide quantitation using amine-reactive isobaric tagging reagents and tandem mass spectrometry: Application to proteins isolated by gel electrophoresis. Rapid Commun. Mass Spectrom 2006, 20, 1127–1134.
[91]  Zhang, Z.Y. Mechanistic studies on protein tyrosine phosphatases. Prog. Nucleic Acid Res. Mol. Biol 2003, 73, 171–220.
[92]  Huang, P.H.; Cavenee, W.K.; Furnari, F.B.; White, F.M. Uncovering therapeutic targets for glioblastoma: A systems biology approach. Cell Cycle 2007, 6, 2750–2754.
[93]  Kirkpatrick, D.S.; Gerber, S.A.; Gygi, S.P. The absolute quantification strategy: A general procedure for the quantification of proteins and post-translational modifications. Methods 2005, 35, 265–273.
[94]  Wang, G.; Wu, W.W.; Zeng, W.; Chou, C.L.; Shen, R.F. Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes. J. Proteome Res 2006, 5, 1214–1223.
[95]  Bailey, J.L.; Tardif, S.; Dubé, C.; Beaulieu, M.; Reyes-Moreno, C.; Lefièvre, L.; Leclerc, P. Use of phosphoproteomics to study tyrosine kinase activity in capacitating boar sperm. Kinase activity and capacitation. Theriogenology 2005, 63, 599–614.
[96]  Bridon, G.; Bonneil, E.; Muratore-Schroeder, T.; Caron-Lizotte, O.; Thibault, P. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. Application to the insulin signaling pathway in Drosophila melanogaster S2 cells. J. Proteome Res 2012, 11, 927–940.
[97]  Masuda, T.; Sugiyama, N.; Tomita, M.; Ishihama, Y. Microscale phosphoproteome analysis of 10000 cells from human cancer cell lines. Anal. Chem 2011, 83, 7698–7703.
[98]  Sudhir, P.R.; Chen, C.H.; Kumari, M.P.; Wang, M.J.; Tsou, C.C.; Sung, T.Y.; Chen, J.Y.; Chen, C.H. Label-free quantitative proteomics and N-glycoproteomics analysis of KRAS-activated human bronchial epithelial cells. Mol. Cell. Proteomics 2012, doi:10.1074/mcp.M112.020875.
[99]  Gámez-Pozo, A.; Sánchez-Navarro, I.; Calvo, E.; Díaz, E.; Miguel-Martín, M.; López, R.; Agulló, T.; Camafeita, E.; Espinosa, E.; López, J.A.; et al. Protein phosphorylation analysis in archival clinical cancer samples by shotgun and targeted proteomics approaches. Mol. Biosyst 2011, 7, 2368–2374.
[100]  Pierobon, M.; Belluco, C.; Liotta, L.A.; Petricoin, E.F., III. Reverse phase protein microarrays for clinical applications. Methods Mol. Biol. 2011, 785, 3–12.
[101]  Courcelles, M.; Lemieux, S.; Voisin, L.; Meloche, S.; Thibault, P. ProteoConnections: A bioinformatics platform to facilitate proteome and phosphoproteome analyses. Proteomics 2011, 11, 2654–2671.
[102]  Wojcechowskyj, J.A.; Lee, J.Y.; Seeholzer, S.H.; Doms, R.W. Quantitative phosphoproteomics of CXCL12 (SDF-1) signaling. PLoS One 2011, 6, e24918.
[103]  Pan, C.; Olsen, J.V.; Daub, H.; Mann, M. Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol. Cell. Proteomics 2009, 8, 2796–2808.
[104]  Li, J.; Rix, U.; Fang, B.; Bai, Y.; Edwards, A.; Colinge, J.; Bennett, K.L.; Gao, J.; Song, L.; Eschrich, S.; et al. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat. Chem. Biol 2010, 6, 291–299.
[105]  Mueller, C.; Edmiston, K.H.; Carpenter, C.; Gaffney, E.; Ryan, C.; Ward, R.; White, S.; Memeo, L.; Colarossi, C.; Petricoin, E.F., III; et al. One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens. PLoS One 2011, 6, e23780.
[106]  Huang, P.H. Phosphoproteomic studies of receptor tyrosine kinases: Future perspectives. Mol. Biosyst 2012, 8, 1100–1107.
[107]  Gámez-Pozo, A.; Sánchez-Navarro, I.; Calvo, E.; Agulló-Ortu?o, M.T.; López-Vacas, R.; Díaz, E.; Camafeita, E.; Nistal, M.; Madero, R.; Espinosa, E.; et al. PTRF/cavin-1 and MIF proteins are identified as NSCLC biomarkers by label-free proteomics. PLoS One 2012, 7, e33752.
[108]  Nanjundan, M.; Byers, L.A.; Carey, M.S.; Siwak, D.R.; Raso, M.G.; Diao, L.; Wang, J.; Coombes, K.R.; Roth, J.A.; Mills, G.B.; et al. Proteomic profiling identifies pathways dysregulated in non-small cell lung cancer and an inverse association of AMPK and adhesion pathways with recurrence. J. Thorac. Oncol 2010, 5, 1894–1904.
[109]  Jun, H.J.; Johnson, H.; Bronson, R.T.; de Feraudy, S.; White, F.; Charest, A. The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Res 2012, 72, 3764–3774.
[110]  Huerta-Yepez, S.; Yoon, N.K.; Hernandez-Cueto, A.; Mah, V.; Rivera-Pazos, C.M.; Chatterjee, D.; Vega, M.I.; Maresh, E.L.; Horvath, S.; Chia, D.; et al. Expression of phosphorylated raf kinase inhibitor protein (pRKIP) is a predictor of lung cancer survival. BMC Cancer 2011, 11, 259.
[111]  Cho, W.C. Omics Approaches in Cancer Research. In An Omics Perspective on Cancer Research; Cho, W.C., Ed.; Springer: Heidelberg, Germany, 2010; pp. 1–9.
[112]  Harsha, H.C.; Pandey, A. Phosphoproteomics in cancer. Mol. Oncol 2010, 4, 482–495.
[113]  Trost, M.; Bridon, G.; Desjardins, M.; Thibault, P. Subcellular phosphoproteomics. Mass Spectrom. Rev 2010, 29, 962–990.
[114]  Zhou, H.; Albuquerque, C.P.; Liang, J.; Suhandynata, R.T.; Weng, S. Quantitative phosphoproteomics: New technologies and applications in the DNA damage response. Cell Cycle 2010, 9, 3479–3484.
[115]  Schaab, C. Analysis of phosphoproteomics data. Methods Mol. Biol 2011, 696, 41–57.
[116]  López, E.; Munoz, S.; Pascual, J.; Madero, L. Relevant phosphoproteomic and mass spectrometry: Approaches useful in clinical research. Clin. Transl. Med 2012, doi:10.1186/2001-1326-1-2.
[117]  Lopez, E.; Madero, L.; Lopez-Pascual, J.; Latterich, M. Clinical proteomics and OMICS clues useful in translational medicine research. Proteome Sci 2012, 10, doi:10.1186/1477-5956-10-35.
[118]  Cho, W.C.; Cheng, C.H. Oncoproteomics: Current trends and future perspectives. Expert Rev. Proteomics 2007, 4, 401–410.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133