全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Profound Re-Organization of Cell Surface Proteome in Equine Retinal Pigment Epithelial Cells in Response to In Vitro Culturing

DOI: 10.3390/ijms131114053

Keywords: equine recurrent uveitis, membrane protein, outer blood-retinal barrier, retinal pigment epithelium cells, cell line, proteomics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses’ vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies.

References

[1]  Hauck, S.M.; Hofmaier, F.; Dietter, J.; Swadzba, M.E.; Blindert, M.; Amann, B.; Behler, J.; Kremmer, E.; Ueffing, M.; Deeg, C.A. Label-free lc-msms analysis of vitreous from autoimmune uveitis reveals a significant decrease in secreted wnt signalling inhibitors dkk3 and sfrp2. J. Proteomics 2012, 75, 4545–4554.
[2]  Rotilio, D.; Della Corte, A.; D’Imperio, M.; Coletta, W.; Marcone, S.; Silvestri, C.; Giordano, L.; Di Michele, M.; Donati, M.B. Proteomics: Bases for protein complexity understanding. Thromb. Res 2012, 129, 257–262.
[3]  Doherty, M.K.; Whitfield, P.D. Proteomics moves from expression to turnover: Update and future perspective. Expert Rev. Proteomics 2011, 8, 325–334.
[4]  Degroote, R.L.; Hauck, S.M.; Kremmer, E.; Amann, B.; Ueffing, M.; Deeg, C.A. Altered expression of talin 1 in peripheral immune cells points to a significant role of the innate immune system in spontaneous autoimmune uveitis. J. Proteomics 2012, 75, 4536–4544.
[5]  Hauck, S.M.; Dietter, J.; Kramer, R.L.; Hofmaier, F.; Zipplies, J.K.; Amann, B.; Feuchtinger, A.; Deeg, C.A.; Ueffing, M. Deciphering membrane-associated molecular processes in target tissue of autoimmune uveitis by label-free quantitative mass spectrometry. Mol. Cell. Proteomics 2010, 9, 2292–2305.
[6]  Wu, C.C.; Yates, J.R., III. The application of mass spectrometry to membrane proteomics. Nat. Biotechol 2003, 21, 262–267.
[7]  Deeg, C.A.; Pompetzki, D.; Raith, A.J.; Hauck, S.M.; Amann, B.; Suppmann, S.; Goebel, T.W.; Olazabal, U.; Gerhards, H.; Reese, S.; et al. Identification and functional validation of novel autoantigens in equine uveitis. Mol. Cell. Proteomics 2006, 5, 1462–1470.
[8]  Deeg, C.A.; Raith, A.J.; Amann, B.; Crabb, J.W.; Thurau, S.R.; Hauck, S.M.; Ueffing, M.; Wildner, G.; Stangassinger, M. Cralbp is a highly prevalent autoantigen for human autoimmune uveitis. Clin. Dev. Immunol. 2007, doi:10.1155/2007/39245.
[9]  Eberhardt, C.; Amann, B.; Feuchtinger, A.; Hauck, S.M.; Deeg, C.A. Differential expression of inwardly rectifying K+ channels and aquaporins 4 and 5 in autoimmune uveitis indicates misbalance in muller glial cell-dependent ion and water homeostasis. Glia 2011, 59, 697–707.
[10]  Hauck, S.M.; Schoeffmann, S.; Amann, B.; Stangassinger, M.; Gerhards, H.; Ueffing, M.; Deeg, C.A. Retinal mueller glial cells trigger the hallmark inflammatory process in autoimmune uveitis. J. Proteome Res 2007, 6, 2121–2131.
[11]  Rizzolo, L.J.; Peng, S.; Luo, Y.; Xiao, W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog. Retinal Eye Res 2011, 30, 296–323.
[12]  Ehrenhofer, M.C.; Deeg, C.A.; Reese, S.; Liebich, H.G.; Stangassinger, M.; Kaspers, B. Normal structure and age-related changes of the equine retina. Vet. Ophthalmol 2002, 5, 39–47.
[13]  Deeg, C.A.; Ehrenhofer, M.; Thurau, S.R.; Reese, S.; Wildner, G.; Kaspers, B. Immunopathology of recurrent uveitis in spontaneously diseased horses. Exp. Eye Res 2002, 75, 127–133.
[14]  Alge, C.S.; Suppmann, S.; Priglinger, S.G.; Neubauer, A.S.; May, C.A.; Hauck, S.; Welge-Lussen, U.; Ueffing, M.; Kampik, A. Comparative proteome analysis of native differentiated and cultured dedifferentiated human rpe cells. Invest. Ophthalmol. Visual Sci 2003, 44, 3629–3641.
[15]  Parker, R.O.; Crouch, R.K. Retinol dehydrogenases (rdhs) in the visual cycle. Exp. Eye Res 2010, 91, 788–792.
[16]  Dunn, K.C.; Aotaki-Keen, A.E.; Putkey, F.R.; Hjelmeland, L.M. Arpe-19, a human retinal pigment epithelial cell line with differentiated properties. Exp. Eye Res 1996, 62, 155–169.
[17]  Hamel, C.P.; Tsilou, E.; Pfeffer, B.A.; Hooks, J.J.; Detrick, B.; Redmond, T.M. Molecular cloning and expression of rpe65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J. Biol. Chem 1993, 268, 15751–15757.
[18]  Strauss, O. The retinal pigment epithelium in visual function. Physiol. Rev 2005, 85, 845–881.
[19]  Strauss, O. The Retinal Pigment Epithelium. The Organization of the Retina and Visual System; University of Utah Health Sciences Center: Salt Lake City, UT, USA, 1995. Available online: http://www.ncbi.nlm.nih.gov/books/NBK54392/ , accessed 30 October 2012.
[20]  Deeg, C.A.; Altmann, F.; Hauck, S.M.; Schoeffmann, S.; Amann, B.; Stangassinger, M.; Ueffing, M. Down-regulation of pigment epithelium-derived factor in uveitic lesion associates with focal vascular endothelial growth factor expression and breakdown of the blood-retinal barrier. Proteomics 2007, 7, 1540–1548.
[21]  Greer, S.; Honeywell, R.; Geletu, M.; Arulanandam, R.; Raptis, L. Housekeeping genes; expression levels may change with density of cultured cells. J. Immunol. Methods 2010, 355, 76–79.
[22]  Burke, J.M.; Cao, F.; Irving, P.E.; Skumatz, C.M. Expression of e-cadherin by human retinal pigment epithelium: Delayed expression in vitro. Invest. Ophthalmol. Visual Sci 1999, 40, 2963–2970.
[23]  Alcazar, O.; Hawkridge, A.M.; Collier, T.S.; Cousins, S.W.; Bhattacharya, S.K.; Muddiman, D.C.; Marin-Castano, M.E. Proteomics characterization of cell membrane blebs in human retinal pigment epithelium cells. Mol. Cell. Proteomics 2009, 8, 2201–2211.
[24]  Muramatsu, T.; Miyauchi, T. Basigin (cd147): A multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol. Histopathol 2003, 18, 981–987.
[25]  Philp, N.J.; Wang, D.; Yoon, H.; Hjelmeland, L.M. Polarized expression of monocarboxylate transporters in human retinal pigment epithelium and arpe-19 cells. Invest. Ophthalmol. Visual Sci 2003, 44, 1716–1721.
[26]  Gundersen, D.; Orlowski, J.; Rodriguez-Boulan, E. Apical polarity of Na,K-ATPase in retinal pigment epithelium is linked to a reversal of the ankyrin-fodrin submembrane cytoskeleton. J. Cell Biol 1991, 112, 863–872.
[27]  Wolf, G. Function of the protein RPE65 in the visual cycle. Nutr. Rev 2005, 63, 97–100.
[28]  McBee, J.K.; Van Hooser, J.P.; Jang, G.F.; Palczewski, K. Isomerization of 11-cis-retinoids to all-trans-retinoids in vitro and in vivo. J. Biol. Chem 2001, 276, 48483–48493.
[29]  Huang, J.; Possin, D.E.; Saari, J.C. Localizations of visual cycle components in retinal pigment epithelium. Mol. Vis 2009, 15, 223–234.
[30]  Milyushina, L.A.; Verdiev, B.I.; Kuznetsova, A.V.; Aleksandrova, M.A. Expression of multipotent and retinal markers in pigment epithelium of adult human in vitro. Bull. Exp. Biol. Med 2012, 153, 157–162.
[31]  Limb, G.A.; Salt, T.E.; Munro, P.M.; Moss, S.E.; Khaw, P.T. In vitro characterization of a spontaneously immortalized human muller cell line (mio-m1). Invest. Ophthalmol. Visual Sci 2002, 43, 864–869.
[32]  Ham, D.I.; Gentleman, S.; Chan, C.C.; McDowell, J.H.; Redmond, T.M.; Gery, I. Rpe65 is highly uveitogenic in rats. Invest. Ophthalmol. Visual Sci 2002, 43, 2258–2263.
[33]  Deeg, C.A.; Reese, S.; Gerhards, H.; Wildner, G.; Kaspers, B. The uveitogenic potential of retinal S-antigen in horses. Invest. Ophthalmol. Visual Sci 2004, 45, 2286–2292.
[34]  Mochizuki, M. Regional immunity of the eye. Acta Ophthalmol 2010, 88, 292–299.
[35]  Ho, T.C.; Del Priore, L.V. Reattachment of cultured human retinal pigment epithelium to extracellular matrix and human bruch’s membrane. Invest. Ophthalmol. Visual Sci 1997, 38, 1110–1118.
[36]  Li, W.; Stramm, L.E.; Aguirre, G.D.; Rockey, J.H. Extracellular matrix production by cat retinal pigment epithelium in vitro: Characterization of type iv collagen synthesis. Exp. Eye Res 1984, 38, 291–304.
[37]  Campochiaro, P.A.; Jerdon, J.A.; Glaser, B.M. The extracellular matrix of human retinal pigment epithelial cell in vivo and its synthesis in vitro. Invest. Ophthalmol. Visual Sci 1986, 27, 1615–1621.
[38]  Aisenbrey, S.; Zhang, M.; Bacher, D.; Yee, J.; Brunken, W.J.; Hunter, D.D. Retinal pigment epithelial cells synthesize laminins, including laminin 5, and adhere to them through alpha3- and alpha6-containing integrins. Invest. Ophthalmol. Visual Sci 2006, 47, 5537–5544.
[39]  Clegg, D.O.; Mullick, L.H.; Wingerd, K.L.; Lin, H.; Atienza, J.W.; Bradshaw, A.D.; Gervin, D.B.; Cann, G.M. Adhesive events in retinal development and function: The role of integrin receptors. Results Probl. Cell Differ 2000, 31, 141–156.
[40]  Gullapalli, V.K.; Sugino, I.K.; Zarbin, M.A. Culture-induced increase in alpha integrin subunit expression in retinal pigment epithelium is important for improved resurfacing of aged human bruch’s membrane. Exp. Eye Res 2008, 86, 189–200.
[41]  Chu, P.G.; Grunwald, G.B. Identification of an adhesion-associated protein of the retinal pigment epithelium. Invest. Ophthalmol. Visual Sci 1990, 31, 847–855.
[42]  Singer, S.J. Intercellular communication and cell-cell adhesion. Science 1992, 255, 1671–1677.
[43]  Karl, M.O.; Valtink, M.; Bednarz, J.; Engelmann, K. Cell culture conditions affect RPE phagocytic function. Graefe’s Arch. Clin. Exp. Ophthalmol 2007, 245, 981–991.
[44]  Nagai, H.; Kalnins, V.I. Normally occurring loss of single cells and repair of resulting defects in retinal pigment epithelium in situ. Exp. Eye Res 1996, 62, 55–61.
[45]  Vacanti, V.; Kong, E.; Suzuki, G.; Sato, K.; Canty, J.M.; Lee, T. Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J. Cell Physiol 2005, 205, 194–201.
[46]  Hauck, S.M.; Suppmann, S.; Ueffing, M. Proteomic profiling of primary retinal muller glia cells reveals a shift in expression patterns upon adaptation to in vitro conditions. Glia 2003, 44, 251–263.
[47]  Bhutto, I.; Lutty, G. Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/bruch’s membrane/choriocapillaris complex. Mol. Aspects Med 2012, 33, 295–317.
[48]  Machemer, R. Proliferative vitreoretinopathy (PVR): A personal account of its pathogenesis and treatment. Proctor lecture. Invest. Ophthalmol. Visual Sci 1988, 29, 1771–1783.
[49]  Bodaghi, B.; Rao, N. Relevance of animal models to human uveitis. Ophthalmic Res 2008, 40, 200–202.
[50]  Deeg, C.A.; Hauck, S.M.; Amann, B.; Pompetzki, D.; Altmann, F.; Raith, A.; Schmalzl, T.; Stangassinger, M.; Ueffing, M. Equine recurrent uveitis—A spontaneous horse model of uveitis. Ophthalmic Res 2008, 40, 151–153.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133