全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles

DOI: 10.3390/ijms131114723

Keywords: nanoscience, metal nanoparticle theory, conduction electrons, conduction bands, platinum nanoparticles, radiolytic method, quantum mechanical calculation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of ( n = 5, l = 2) and ( n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size.

References

[1]  Long, N.V.; Thi, C.H.; Nogami, M.; Ohtaki, M. Novel issues of morphology, size, and structure of Pt nanoparticles in chemical engineering: surface attachment, aggregation or agglomeration, assembly, and structural changes. New J. Chem 2012, 36, 1320–1334.
[2]  Sharma, S.; Pollet, B.G. Support materials for PEMFC and DMFC electrocatalysts—A review. J. Power Sources 2012, 208, 96–119.
[3]  Peng, Z.; Yang, H. Designer platinum: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nanotoday 2009, 4, 143–164.
[4]  Yang, Y.; Ying, J.Y. A general phase-transfer protocol for metal ions and its application in nanocrystals synthesis. Nat. Mater 2009, 8, 683–689.
[5]  Antolini, E. Platinum-based ternary catalysts for low temperature fuel cells Part II. Electrochemical properties. Appl. Catal. B 2007, 74, 337–350.
[6]  Krishnamurthy, B.; Deepalochani, S. Performance of platinum black and supported platinum catalysts in a direct methanol fuel cell. Int. J. Electrochem. Sci 2009, 4, 386–395.
[7]  Long, N.V.; Hien, T.D.; Asaka, T.; Ohtaki, M.; Nogami, M. Synthesis and characterization of Pt-Pd alloy and core-shell bimetallic nanopoarticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shape core-shell morphologies and nanostructures. Int. J. Hydrog. Energy 2011, 36, 8478–8491.
[8]  Chen, A.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev 2010, 110, 3767–3804.
[9]  Hoshika, S.; Nagano, F.; Tanaka, T.; Ikeda, T.; Wada, T.; Asakura, K.; Koshiro, K.; Selimovic, D.; Miyamoto, Y.; Sidhu, S.K.; et al. Effect of application time of colloidal platinum nanoparticles on the microtensile bond strength to dentin. Dent. Mater. J 2010, 29, 682–689.
[10]  Kang, W.P.; Kim, C.K. Novel platinum-tin oxide-silicon nitride-silicon dioxide-silicon gas sensing component for oxygen and carbon monoxide gases at low temperature. Appl. Phys. Lett 1993, 63, 421–423.
[11]  Xie, J.; Wang, S.; Aryasomayajula, L.; Varadan, V.K. Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing. Nanotechnology 2007, 18, 065503.
[12]  Boulikas, T.; Pantos, A.; Bellis, E.; Christofis, P. Designing platinum compounds in cancer: Structures and mechanisms. Cancer Ther 2007, 5, 537–583.
[13]  Hvolbaek, B.; Janssens, T.V.W.; Clausen, B.S.; Falsig, H.; Christensen, C.H.; Norskov, J.K. Catalysts activity of Au nanoparticles. Nanotoday 2007, 2, 14–18.
[14]  Li, F.; Li, F.; Song, J.; Song, J.; Han, D.; Niu, L. Green synthesis of highly stable platinum nanoparticles stabilized by amino-terminated ionic liquid and its electrocatalysts for dioxygen reduction and methanol oxidation. Electrochem. Commun 2009, 11, 351–354.
[15]  Chen, C.W.; Akashi, M. Synthesis, characterization, and catalytic properties of colloidal platinum nanoparticles protected by poly (N-isopropylacrylamide). Langmuir 1997, 13, 6465–6472.
[16]  Long, N.V.; Chien, N.D.; Hayakawa, T.; Hirata, H.; Lakshminarayana, G.; Nogami, M. The synthesis and characterization of platinum nanoparticles: A method of controlling the size and morphology. Nanotechnology 2010, 21, 035605.
[17]  Mizukoshi, Y.; Takagi, E.; Okuno, H.; Oshima, R.; Maeda, Y.; Nagata, Y. Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: Role of surfactants. Ultrason. Sonochem 2011, 8, 1–6.
[18]  Chen, D.H.; Yeh, J.J.; Huang, T.C. Synthesis of platinum ultrafine particles in AOT reverse micelles. J. Colloid Interface Sci 1999, 215, 159–166.
[19]  Zhou, M.; Chen, S.; Ren, H.; Wua, L.; Zhao, S. Electrochemical formation of platinum nanoparticles by a novel rotating cathode method. Physica E 2007, 27, 341–350.
[20]  Castro, E.G.; Salvatierra, R.V.; Schreiner, W.H.; Oliveira, M.M.; Zarbin, A.J.G. Dodecanethiol-stabilized platinum nanoparticles obtained by a two-phase method: Synthesis, characterization, mechanism of formation, and electrocatalytic properties. Chem. Mater 2010, 22, 360–370.
[21]  Ingelsten, H.H.; Bagwe, R.; Palmqvist, A.; Skoglundh, M.; Svanberg, C.; Holmberg, K.; Shah, D.O. Kinetics of the formation of nano-sized platinum particles in water-in-oil microemulsions. J. Colloid Interface Sci 2001, 241, 104–111.
[22]  Coccia, F.; Tonucci, L.; Bosco, D.; Bressan, M.; d’Alessandro, N. One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem 2012, 14, 1073–1078.
[23]  Harada, M.; Okamoto, K.; Terazima, M. Diffusion of platinum ions and platinum nanoparticles during photoreduction processes using the transient grating method. Langmuir 2006, 22, 9142–9149.
[24]  Wang, H.; Sun, X.; Ye, Y.; Qiu, S. Radiation induced synthesis of Pt nanoparticles supported on carbon nanotubes. J. Power Sources 2006, 161, 839–842.
[25]  Lai, T.; Park, H.G.; Choi, S.H. γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater. Chem. Phys 2007, 105, 325–330.
[26]  Naghavi, K.; Saion, E.; Rezaee, K.; Yunus, W.M.M. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation. Radiat. Phys. Chem 2010, 79, 1203–1208.
[27]  Doudna, C.M.; Bertino, M.F.; Blum, F.D.; Tokuhiro, A.T.; Lahiri-Dey, D.; Chattopadhyay, S.; Terry, J. Radiolytic synthesis of bimetallic Ag-Pt nanoparticles with a high aspect ratio. J. Phys. Chem. B 2003, 107, 2966–2970.
[28]  Abedini, A.; Larki, F.; Saion, E.; Zakaria, A.; Hussein, M.Z. Influence of dose and ion concentration on formation of binary Al–Ni alloy nanoclusters. Radiat. Phys. Chem 2012, 81, 1653–1658.
[29]  Fratoddi, I.; Venditti, I.; Battocchio, C.; Polzonetti, G.; Cametti, C.; Russo, M.V. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: Synthesis and characterization. Nanoscale Res. Lett 2011, 6, 98.
[30]  Mie, G. Contribution to the optics of turbid media, particularly of colloidal metal solutions. J. Ann. Phys 1908, 25, 377–445.
[31]  Stephan, L.; El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8420.
[32]  Khlebtsov, N.G.; Dykman, L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Trans 2010, 111, 1–35.
[33]  Vorontsov, A.V.; Savinov, E.N.; Zhensheng, J. Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation. J. Photochem. Photobiol. A 1999, 125, 113–117.
[34]  Long, N.V.; Ohtaki, M.; Uchida, M.; Jalem, R.; Hirata, H.; Chien, N.D.; Nogami, M. Synthesis and characterization of polyhedral Pt nanoparticles: Their catalytic property, surface attachment, self-aggregation and assembly. J. Colloid Interface Sci 2011, 359, 339–350.
[35]  Bragau, A.; Miu, M.; Simion, M.; Anescu, A.I.; Danila, M.; Radoi, A.; Dinescu, A. Platinum nanoparticles for nanocomposite membranes preparation. Rom. J. Inf. Sci. Technol 2010, 13, 350–357.
[36]  Ye, H.; Scott, R.W.J.; Crooks, R.M. Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly (amidoamine) dendrimers. Langmuir 2004, 20, 2915–2920.
[37]  Jianga, S.J.; Liua, Z.; Tangb, H.L.; Pan, M. Synthesis and characterization of PDDA-stabilized Pt nanoparticles for direct methanol fuel cells. Electrochim. Acta 2006, 51, 5721–5730.
[38]  Rivadullar, J.F.; Vergara, M.C.; Blanco, M.C.; L’opez-Quintela, M.A.; Rivas, J. Optical properties of platinum particles synthesized in microemulsions. J. Phys. Chem. B 1997, 101, 8997–9004.
[39]  Henglein, A.; Ershov, B.G.; Malow, M.J. Absorption spectrum and some chemical reactions of colloidal platinum in aqueous solution. Phys. Chem 1995, 99, 14129–14136.
[40]  Duff, D.G.; Edwards, P.P.; Johnson, B.F.G. Formation of a polymer-protected platinum sol: A new understanding of the parameters controlling morphology. J. Phys. Chem 1995, 99, 15934–15944.
[41]  Chen, C.W.; Takezako, T.; Yamamoto, K.; Serizawa, T.; Akashi, M. Poly(N-vinylisobutyramide)- stabilized platinum nanoparticles: Synthesis and temperature-responsive behaviour in aqueous solution. Colloids Surf. A 2000, 169, 107–116.
[42]  Hikosaka, K.; Kim, J.; Kajita, M.; Kanayama, A.; Miyamoto, Y. Platinum nanoparticles have an activity similar to mitochondrial NADH: Ubiquinone oxidoreductase. Colloids Surf. B 2008, 66, 195–200.
[43]  Liu, Z.; Tian, Z.O.; Jiang, S.P. Synthesis and characterization of Nafion-stabilized Pt nanoparticles for polymer electrolyte fuel cells. Electrochim. Acta 2005, 52, 1213–1220.
[44]  Liu, Z.; Jiang, S.P. Synthesis of PDDA–Pt nanoparticles for the self-assembly of electrode/Nafion membrane interface of polymer electrolyte fuel cells. J. Power Sources 2006, 159, 55–58.
[45]  Coutanceau, C.; Baranton, S.; Napporn, T.W. Platinum Fuel Cell Nanoparticle Syntheses: Effect on Morphology, Structure and Electrocatalytic Behavior, the Delivery of Nanoparticles; Hashim, A.A., Ed.; InTech: Rijeka, Croatia, 2012.
[46]  Long, N.V.; Ohtaki, M.; Nogami, M.; Hien, T.D. Effects of heat treatment and poly(vinylpyrrolidone) (PVP) polymer on electrocatalytic activity of polyhedral Pt nanoparticles towards their methanol oxidation. Colloid. Polym. Sci 2011, 289, 1373–1386.
[47]  Soltani, N.; Saion, E.; Hussein, M.Z.; Bahrami, A.; Naghavi, K.; Yunus, R. Microwave irradiation effects on hydrothermal and polyol synthesis of ZnS nanoparticles. Int. J. Mol. Sci 2012, 13, 265–274.
[48]  Cameron, R.E.; Bocarsly, A.B. Multielectron-photoinduced reduction of chloroplatinum complexes: Visible light deposition of platinum metal. Inorg. Chem 1986, 25, 2910–1913.
[49]  Kaane, E.O. Band structure of indium antimonide. J. Phys. Chem. Solids 1957, 1, 249–261.
[50]  Jiang, H.; Barnger, H.U.; Yang, W. Density function theory simulation of large quantum dots. Phys. Rev 2003, B68, 165337–165346.
[51]  Howard, P.; Andreev, A.; Williams, D.A. Density functional theory calculations of electronic structure in silicon double quantum dots. Phys. Stat. Sol. C 2008, 5, 3156–3158.
[52]  Gharibshahi, E.; Saion, E. Calculation of optical absorption of CdS and CdSe quantum dots. Mater. Res. Innov 2011, 5, 67–70.
[53]  Soltani, N.; Gharibshahi, E.; Saion, E. Band gap of cubic and hexagonal CdS nanoparticles—Experimental and theoretical studies. Chalcogenide Lett. 2012, 9, 321–328.
[54]  Gharibshahi, E.; Saion, E. Quantum mechanical calculation of optical absorption of silver and gold nanoparticles by density functional theory. Phys. Int 2010, 1, 57–64.
[55]  Saion, E.; Gharibshahi, E. On the theory of metal nanoparticles based on quantum mechanical calculation. J. Fund. Sci 2011, 7, 6–11.
[56]  Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev 1964, 136, 864–871.
[57]  Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev 1965, 140, 1133–1138.
[58]  Thomas, L.H. The calculation of atomic fields. Math. Proc. Cambridge Philos. Soc 1927, 23, 542–548.
[59]  Fermi, E. Unmetodostatistico per la determinazione di alcunepriorietadell’atome. Rend. Accad. Naz. Lincei 1927, 6, 602–607.
[60]  Dirac, P.A.M. Note on exchange phenomena in the Thomas atom. Math. Proc. Cambridge Philos. Soc 1930, 26, 376–385.
[61]  Von Weizsacker, C.F. ZurTheorie der Kernmassen. Zeitschrift fur Phys 1935, 96, 431–458.
[62]  Yang, W. Gradient correction in Thomas-Fermi theory. Phys. Rev. A 1986, 34, 4575–4585.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133