L-Arginine (Arg) is oxidized to L-citrulline and nitric oxide (NO) by the action of endothelial nitric oxide synthase (NOS). In contrast, protein-incorporated Arg residues can be methylated with subsequent proteolysis giving rise to methylarginine compounds, such as asymmetric dimethylarginine (ADMA) that competes with Arg for binding to NOS. Most ADMA is degraded by dimethylarginine dimethyaminohydrolase (DDAH), distributed widely throughout the body and regulates ADMA levels and, therefore, NO synthesis. In recent years, several studies have suggested that increased ADMA levels are a marker of atherosclerotic change, and can be used to assess cardiovascular risk, consistent with ADMA being predominantly absorbed by endothelial cells. NO is an important messenger molecule involved in numerous biological processes, and its activity is essential to understand both pathogenic and therapeutic mechanisms in kidney disease and renal transplantation. NO production is reduced in renal patients because of their elevated ADMA levels with associated reduced DDAH activity. These factors contribute to endothelial dysfunction, oxidative stress and the progression of renal damage, but there are treatments that may effectively reduce ADMA levels in patients with kidney disease. Available data on ADMA levels in controls and renal patients, both in adults and children, also are summarized in this review.
References
[1]
Clarke, R.; Daly, L.; Robinson, K.; Naughten, E.; Cahalane, S.; Fowler, B.; Graham, I. Hyperhomocysteinemia: An independent risk factor for vascular disease. N. Engl. J. Med 1991, 324, 1149–1155.
[2]
Aldámiz-Echevarria, L.; Sanjurjo, P.; Vallo, A.; Aquino, L.; Perez-Nanclares, G.; Gimeno, P.; Rueda, M.; Ruiz, I.; Urreizti, R.; Rodriguez-Soriano, J. Hyperhomocysteinemia in children with renal transplants. Pediatr. Nephrol 2002, 17, 718–723.
[3]
Nitsch, D.D.; Ghilardi, N.; Muhl, H.; Nitsch, C.; Brune, B.; Pfeilschifter, J. Apoptosis and expression of inducible nitric oxide synthase are mutually exclusive in renal mesangial cell. Am. J. Pathol 1997, 150, 889–900.
[4]
Tojo, A.; Welch, W.J.; Bremen, V.; Kimoto, M.; Kimura, K.; Omata, M.; Ogawa, T.; Vallance, P.; Wilcox, C.S. Colocalization of demethylating enzymes and NOS and functional effects of methylarginines in rat kidney. Kidney Int 1997, 52, 1593–1601.
[5]
Holmqvist, B.; Olsson, C.F.; Svensson, M.L.; Svanborg, C.; Forsell, J.; Alm, P. Expression of nitric oxide synthase isoforms in the mouse kidney: Cellular localization and influence by lipopolysaccharide and Toll-like receptor 4. J. Mol. Histol 2005, 36, 499–516.
[6]
Morrisey, J.J.; McCracken, R.; Kaneto, H.; Vehaskari, M.; Montani, D.; Klahr, S. Location of an inducible nitric oxide synthase mRNA in the normal kidney. Kidney Int 1994, 45, 998–1005.
[7]
Raij, L.; Shultz, P.J. Endothelium-Derived relaxing factor, nitric oxide: Effects on and production by mesangial cells and glomerulus. J. Am. Soc. Nephrol 1993, 3, 1435–1441.
[8]
Perticone, F.; Maio, R.; Perticone, M.; Sciacqua, A.; Shehaj, E.; Naccarato, P.; Sesti, G. Endothelial dysfunction and subsequent decline in glomerular filtration rate in hypertensive patients. Circulation 2010, 122, 379–384.
[9]
Crespo, M.; Campistol, J.M. Disfunción endotelial en transplante renal. Nefrología 2003, 23, 52–58.
[10]
Caló, L.A.; Dall’ Amico, R.; Pagnin, E.; Bertipaglia, L.; Zacchello, G.; Davis, P.A. Oxidative stress and post-transplant hypertension in pediatric kidney-transplanted patients. J. Pediatr 2006, 149, 53–57.
[11]
Sahin, G.; Akay, O.M.; Bal, C.; Yalcin, A.U.; Gulbas, Z. The effect of calcineurin inhibitors on endothelial and platelet function in renal transplant patients. Clin. Nephrol 2011, 76, 218–225.
[12]
Trapp, A.; Weis, M. The impact of immunosuppression on endothelial function. J. Cardiovasc. Pharmacol 2005, 45, 81–87.
[13]
Morris, S.T.; McMurray, J.J.V.; Rodger, R.S.; Farmer, R.; Jardine, A.G. Endothelial dysfunction in renal transplant recipients maintained on cyclosporine. Kidney Int 2000, 57, 1100–1106.
[14]
Schmidt, R.J.; Yokota, S.; Tracy, T.S.; Sorkin, M.I.; Baylis, C. Nitric oxide production is low in end-stage renal disease patients on peritoneal dialysis. Am. J. Physiol 1999, 276, 794–797.
[15]
Loscalzo, J. l-Arginine and atherothrombosis. J. Nutr 2004, 134, 2798S–2800S.
[16]
Vallance, P.; Leiper, J. Cardiovascular biology of the asymmetric dimethylarginine: Dimethylarginine dimethylaminohydrolase pathway. Arterioescler. Thromb. Vasc. Biol 2004, 24, 1023–1030.
[17]
B?ger, R.H.; Sydow, K.; Borlak, J.; Thum, T.; Lenzen, H.; Schubert, B.; Tsikas, D.; Bode-Boger, S.M. LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: Involvement of S-adenosylmethionine-dependent methyltransferases. Circ. Res 2000, 87, 99–105.
[18]
Tojo, A.; Welch, W.J.; Bremer, V.; Kimoto, M.; Kimura, K.; Omata, M.; Ogawa, T.; Vallance, P.; Wilcox, C.S. Colocalization of demethylating enzymes and NOS and functional effects of methylarginines in rat kidney. Kidney Int 1997, 52, 1593–1601.
[19]
Kielstein, J.T.; Salpeter, S.R.; Bode-Boeger, S.M.; Cooke, J.P.; Fliser, D. Symmetric dimethylarginine (SDMA) as endogenous marker of renal function—A meta-analysis. Nephrol. Dial. Transpl 2006, 21, 2446–2451.
[20]
Kielstein, J.T.; Zoccali, C. Asymmetric dimethylarginine: A novel marker of risk and a potential target for therapy in chronic kidney disease. Curr. Opin. Nephrol. Hypertens 2008, 17, 609–615.
[21]
Kiechl, S.; Lee, T.; Santer, P.; Thompson, G.; Tsimikas, S.; Egger, G.; Holt, D.W.; Willeit, J.; Xu, Q.; Mayr, M. Asymmetric and symmetric dimethylarginines are of similar predictive value for cardiovascular risk in the general population. Atherosclerosis 2009, 205, 261–265.
[22]
Oner-Iyidogan, Y.; Oner, P.; Kocak, H.; Gurdol, F.; Bekpinar, S.; Unlucerci, Y.; Caliskan, Y.; Cetinalp-Demircan, P.; Kocak, T.; Turkmen, A. Dimethylarginines and inflammation markers in patients with chronic kidney disease undergoing dialysis. Clin. Exp. Med 2009, 9, 235–241.
[23]
Schepers, E.; Barreto, D.V.; Liabeuf, S.; Glorieux, G.; Eloot, S.; Barreto, F.C.; Massy, Z.; Vanholder, R. European Uremic Toxin Work Group (EUTox). Symmetric dimethylarginine as a proinflammatory agent in chronic kidney disease. Clin. J. Am. Soc. Nephrol 2011, 6, 2374–2383.
[24]
Brooks, E.R.; Langman, C.B.; Wang, S.; Price, H.E.; Hodges, A.L.; Darling, L.; Yang, A.Z.; Smith, F.A. Methylated arginine derivatives in children and adolescents with chronic kidney disease. Pediatr. Nephrol 2009, 24, 129–134.
[25]
Bode-B?ger, S.M.; Scalera, F.; Kielstein, J.T.; Martens-Lobenhoffer, J.; Breithardt, G.; Fobker, M.; Reinecke, H. Symmetrical dimethylarginine: A new combined parameter for renal function and extent of coronary artery disease. J. Am. Soc. Nephrol 2006, 17, 1128–1134.
[26]
Schepers, E.; Glorieux, G.; Dou, L.; Cerini, C.; Gayrard, N.; Louvet, L.; Maugard, C.; Preus, P.; Rodriguez-Ortiz, M.; Argiles, A.; et al. European Uremic Toxin Work Group (EUTox). Guanidino compounds as cause of cardiovascular damage in chronic kidney disease: An in vitro evaluation. Blood Purif 2010, 30, 277–287.
[27]
Nijveldt, R.J.; Teerlink, T.; van Guldener, C.; Prins, H.A.; van Lambalgen, A.A.; Stehouwer, C.D.; Rauwerda, J.A.; van Leeuwen, P.A. Handling of asymmetrical dimethylarginine and symmetrical dimethylarginine by the rat kidney under basal conditions and during endotoxaemia. Nephrol. Dial. Transpl 2003, 18, 2542–2550.
[28]
Leiper, J.M.; Santa María, J.; Chubb, A.; MacAllister, R.J.; Charles, I.G.; Whitley, G.S.; Vallance, P. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem. J 1999, 343, 209–214.
[29]
Torondel, B.; Nandi, M.; Kelly, P.; Wojciak-Stothard, B.; Fleming, I.; Leiper, J. Adenoviral-Mediated overexpression of DDAH improves vascular tone regulation. Vasc. Med 2010, 15, 205–213.
[30]
Sydow, K.; Fortmann, S.P.; Fair, J.M.; Varady, A.; Hlatky, M.A.; Go, A.S.; Iribarren, C.; Tsao, P.S. ADVANCE Investigators. Distribution of asymmetric dimethylarginine among 980 healthy, older adults of different ethnicities. Clin. Chem 2010, 56, 111–120.
[31]
Perticone, F.; Sciacqua, A.; Maio, R.; Perticone, M.; Galiano Leone, G.; Bruni, R.; Di Cello, S.; Pascale, A.; Talarico, G.; Greco, L.; et al. Endothelial dysfunction, ADMA and insulin resistance in essential hypertension. Int. J. Cardiol 2010, 142, 236–241.
[32]
Wilcken, D.E.; Sim, A.S.; Wang, J.; Wang, X.L. Asymmetric dimethylarginine (ADMA) in vascular, renal and hepatic disease and the regulatory role of l-arginine on its metabolism. Mol. Genet. Metab 2007, 91, 309–317.
[33]
Sibal, L.; Agarwal, S.C.; Home, P.D.; Boger, R.H. The role of asymmetric dimethylarginine (adma) in endothelial dysfunction and cardiovascular disease. Curr. Cardiol. Rev 2010, 6, 82–90.
[34]
Cardounel, A.J.; Cui, H.; Samouilov, A.; Johnson, W.; Kearns, P.; Tsai, A.L.; Berka, V.; Zweier, J.L. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J. Biol. Chem 2007, 282, 879–887.
[35]
B?ger, R.H. Asymmetric dimethylarginine (ADMA): A novel risk marker in cardiovascular medicine and beyond. Ann. Med 2006, 38, 126–136.
[36]
Bermúdez, V.; Bermúdez, F.; Acosta, G.; Acosta, A.; A?ez, J.; Andara, C.; Leal, E.; Cano, C.; Manuel, V.; Hernández, R.; et al. Molecular mechanisms of endothelial dysfunction: From nitric oxide synthesis to ADMA inhibition. Am. J. Ther 2008, 15, 326–333.
[37]
Laakso, M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 1999, 48, 937–942.
[38]
Miyazaki, H.; Matsuoka, H.; Cooke, J.P.; Usui, M.; Ueda, S.; Okuda, S.; Imaizumi, T. Endogenous nitric oxide synthase inhibitor: A novel marker of atherosclerosis. J. Cardiol 1999, 33, 105–106.
[39]
Stühlinger, M.C.; Abbasi, F.; Chu, J.W.; Lamendola, C.; McLaughlin, T.L.; Cooke, J.P.; Reaven, G.M.; Tsao, P.S. Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor. JAMA J. Am. Med. Assoc 2002, 287, 1420–1426.
[40]
Tarnow, L.; Hovind, P.; Teerlink, T.; Stehouwer, C.D.; Parving, H.H. Elevated plasma asymmetric dimethylarginine as a marker of cardiovascular morbidity in early diabetic nephropathy in type 1 diabetes. Diabetes Care 2004, 27, 765–769.
[41]
Andreozzi, F.; Presta, I.; Mannino, G.C.; Scarpelli, D.; Di Silvestre, S.; Di Pietro, N.; Succurro, E.; Sciacqua, A.; Pandolfi, A.; Consoli, A.; et al. A functional variant of the dimethylarginine dimethylaminohydrolase-2 gene is associated with insulin sensitivity. PLoS One 2012, 7, e36224.
[42]
Goonasekera, C.D.; Rees, D.D.; Woolard, P.; Frend, A.; Shah, V.; Dillon, M.J. Nitric oxide synthase inhibitors and hypertension in children and adolescents. J. Hypertens 1997, 15, 901–909.
[43]
Ueda, S.; Yamagishi, S.; Kaida, Y.; Okuda, S. Asymmetric dimethylarginine may be a missing link between cardiovascular disease and chronic kidney disease. Nephrology 2007, 12, 582–590.
[44]
Mallamaci, F.; Zoccali, C. Clinical implications of elevated asymmetric dimethylarginine in chronic kidney disease and end-stage renal disease. J. Ren. Nutr 2009, 19, 25–28.
[45]
Alsagaff, M.Y.; Thaha, M.; Aminuddin, M.; Yogiarto, R.M.; Yogiantoro, M.; Tomino, Y. Asymmetric dimethylarginine: A novel cardiovascular risk factor in end-stage renal disease. J. Int. Med. Res 2012, 40, 340–349.
[46]
Stühlinger, M.C.; Tsao, P.S.; Her, J.H.; Kimoto, M.; Balint, R.F.; Cooke, J.P. Homocysteine impairs the nitric oxide synthase pathway: Role of asymmetric dimethylarginine. Circulation 2001, 104, 2569–2575.
[47]
Lu, T.M.; Ding, Y.A.; Leu, H.B.; Yin, W.H.; Sheu, W.H.; Chu, K.M. Effect of rosuvastatin on plasma levels of asymmetric dimethylarginine in patients with hypercholesterolemia. Am. J. Cardiol 2004, 94, 157–161.
[48]
Hasano?lu, A.; Okur, I.; Oren, A.C.; Bibero?lu, G.; Oktar, S.; Emino?lu, F.T.; Tümer, L. The levels of asymmetric dimethylarginine, homocysteine and carotid intima-media thickness in hypercholesterolemic children. Turk. J. Pediatr 2011, 53, 522–527.
[49]
Zhang, W.Z.; Venardos, K.; Chin-Dusting, J.; Kaye, D.M. Adverse effects of cigarette smoke on NO bioavailability: Role of arginine metabolism and oxidative stress. Hypertension 2006, 48, 278–485.
[50]
Napora, M.; Graczykowska, A.; Próchniewska, K.; Zdrojewski, Z.; Ca?ka, A.; Górny, J.; Stompór, T. Relationship between serum asymmetric dimethylarginine and left ventricular structure and function in patients with end-stage renal disease treated with hemodialysis. Pol. Arch. Med. Wewn 2012, 122, 226–234.
[51]
Zoccali, C.; Mallamaci, F.; Maas, R.; Benedetto, F.A.; Tripepi, G.; Malatino, L.S.; Cataliotti, A.; Bellanuova, I.; B?ger, R. Left ventricular hypertrophy, cardiac remodeling and asymmetric dimethylarginine (ADMA) in hemodialysis patients. Kidney Int 2002, 62, 339–345.
[52]
Shi, B.; Ni, Z.; Zhou, W.; Yu, Z.; Gu, L.; Mou, S.; Fang, W.; Wang, Q.; Cao, L.; Yan, Y.; et al. Circulating levels of asymmetric dimethylarginine are an independent risk factor for left ventricular hypertrophy and predict cardiovascular events in pre-dialysis patients with chronic kidney disease. Eur. J. Intern. Med 2010, 21, 444–448.
[53]
Chen, Y.; Li, Y.; Zhang, P.; Traverse, J.H.; Hou, M.; Xu, X.; Kimoto, M.; Bache, R.J. Dimethylarginine dimethylaminohydrolase and endothelial dysfunction in failing hearts. Am. J. Physiol. Heart. Circ. Physiol 2005, 289, 2212–2219.
[54]
Notsu, Y.; Nabika, T.; Bokura, H.; Suyama, Y.; Kobayashi, S.; Yamaguchi, S.; Masuda, J. Evaluation of asymmetric dimethylarginine and homocysteine in microangiopathy-related cerebral damage. Am. J. Hypertens 2009, 22, 257–262.
[55]
Lang, D.; Kredan, M.B.; Moat, S.J.; Hussain, S.A.; Powell, C.A.; Bellamy, M.F.; Powers, H.J.; Lewis, M.J. Homocysteine-induced inhibition of endothelium-dependent relaxation in rabbit aorta: Role for superoxide anions. Arterioscler. Thromb. Vasc. Biol 2000, 20, 422–427.
[56]
Dayal, S.; Rodionov, R.N.; Arning, E.; Bottiglieri, T.; Kimoto, M.; Murry, D.J.; Cooke, J.P.; Faraci, F.M.; Lentz, S.R. Tissue-Specific downregulation of dimethylarginine dimethylaminohydrolase in hyperhomocysteinemia. Am. J. Physiol. Heart Circ. Physiol 2008, 295, 816–825.
[57]
Van Guldener, C.; Nanayakkara, P.W.; Stehouwer, C.D.A. Homocysteine and asymmetric dimethylarginine (ADMA): Biochemically linked but differently related to vascular disease in chronic kidney disease. Clin. Chem. Lab. Med 2007, 45, 1683–1687.
[58]
Young, J.M.; Terrin, N.; Wang, X.; Greene, T.; Beck, G.J.; Kusek, J.W.; Collins, A.J.; Sarnak, M.J.; Menon, V. Asymmetric dimethylarginine and mortality in stages 3 to 4 chronic kidney disease. Clin. J. Am. Soc. Nephrol 2009, 4, 1115–1120.
[59]
Ito, A.; Tsao, P.S.; Adimoolam, S.; Kimoto, M.; Ogawa, T.; Cooke, J.P. Novel mechanism for endothelial dysfunction: Dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 1999, 99, 3092–3095.
[60]
Feng, M.; Liu, L.; Guo, Z.; Xiong, Y. Gene transfer of dimethylarginine dimethylaminohydrolase-2 improves the impairments of DDAH/ADMA/NOS/NO pathway in endothelial cells induced by lysophosphatidylcholine. Eur. J. Pharmacol 2008, 584, 49–56.
Schnabel, R.; Blankenberg, S.; Lubos, E.; Lackner, K.J.; Rupprecht, H.J.; Espinola-Klein, C.; Jachmann, N.; Post, F.; Peetz, D.; Bickel, C.; et al. Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: Results from the AtheroGene Study. Circ. Res 2005, 97, 53–59.
[63]
Kielstein, J.T.; B?ger, R.H.; Bode-B?ger, S.M.; Fr?lich, J.C.; Haller, H.; Ritz, E.; Fliser, D. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J. Am. Soc. Nephrol 2002, 13, 170–176.
[64]
Kielstein, J.T.; B?ger, R.H.; Bode-B?ger, S.M.; Sch?ffer, J.; Barbey, M.; Koch, K.M.; Fr?lich, J.C. Asymmetric dimethylarginine plasma concentrations differ in patients with end-stage renal disease: Relationship to treatment method and atherosclerotic disease. J. Am. Soc. Nephrol 1999, 10, 594–600.
[65]
Jacobi, J.; Tsao, P.S. Asymmetrical dimethylarginine in renal disease: Limits of variation or variation limits? A systematic review. Am. J. Nephrol 2008, 28, 224–237.
[66]
Tripepi, G.; Mattace Raso, F.; Sijbrands, E.; Seck, M.S.; Maas, R.; Boger, R.; Witteman, J.; Rapisarda, F.; Malatino, L.; Mallamaci, F.; et al. Inflammation and asymmetric dimethylarginine for predicting death and cardiovascular events in ESRD patients. Clin. J. Am. Soc. Nephrol 2011, 6, 1714–1721.
[67]
Dobrian, A.D. ADMA and NOS regulation in chronic renal disease: Beyond the old rivalry for l-arginine. Kidney Int 2012, 81, 722–724.
[68]
Kajimoto, H.; Kai, H.; Aoki, H.; Yasuoka, S.; Anegawa, T.; Aoki, Y.; Ueda, S.; Okuda, S.; Imaizumi, T. Inhibition of eNOS phosphorylation mediates endothelial dysfunction in renal failure: New effect of asymmetric dimethylarginine. Kidney Int 2012, 81, 762–768.
[69]
Zoccali, C.; Kielstein, J.T. Asymmetric dimethylarginine: A new player in the pathogenesis of renal disease? Curr. Opin. Nephrol. Hypertens 2006, 15, 314–320.
[70]
Kielstein, J.T.; Martens-Lobenhoffer, J.; Vollmer, S.; Bode-B?ger, S.M. l-Arginine, ADMA, SDMA, creatinine, MDRD formula: Detour to renal function testing. J. Nephrol 2008, 21, 959–961.
[71]
Chen, G.F.; Moningka, N.C.; Sasser, J.M.; Zharikov, S.; Cunningham, M., Jr; Tain, Y.L.; Schwartz, I.F.; Baylis, C. Arginine and asymmetric dimethylarginine in puromycin aminonucleoside-induced chronic kidney disease in the rat. Am. J. Nephrol. 2012, 35, 40–48.
[72]
Busch, M.; Fleck, C.; Wolf, G.; Stein, G. Asymmetrical (ADMA) and symmetrical dimethylarginine (SDMA) as potential risk factors for cardiovascular and renal outcome in chronic kidney disease—Possible candidates for paradoxical epidemiology? Amino Acids 2006, 30, 225–232.
[73]
Muscheites, J.; Meyer, A.A.; Drueckler, E.; Wigger, M.; Fischer, D.C.; Kundt, G.; Kienast, W.; Haffner, D. Assessment of the cardiovascular system in pediatric chronic kidney disease: A pilot study. Pediatr. Nephrol 2008, 23, 2233–2239.
[74]
Lu, T.M.; Chung, M.Y.; Lin, C.C.; Hsu, C.P.; Lin, S.J. Asymmetric dimethylarginine and clinical outcomes in chronic kidney disease. Clin. J. Am. Soc. Nephrol 2011, 6, 1566–1572.
[75]
Marescau, B.; Nagels, G.; Possemiers, I.; de Broe, M.E.; Because, I.; Billiouw, J.M.; Lornoy, W.; de Deyn, P.P. Guanidino compounds in serum and urine of nondialyzed patients with chronic renal insufficiency. Metabolism 1997, 46, 1024–1031.
[76]
Pi, J.; Kumagai, Y.; Sun, G.; Shimojo, N. Improved method for simultaneous determination of l-arginine and its mono- and dimethylated metabolites in biological samples by high-performance liquid chromatography. J. Chromatogr. B 2000, 742, 199–203.
[77]
Tsikas, D.; Schubert, B.; Gutzki, F.M.; Sandmann, J.; Fr?lich, J.C. Quantitative determination of circulating and urinary asymmetric dimethylarginine (ADMA) in humans by gas chromatography-tandem mass spectrometry as methyl ester tri(N-pentafluoropropionyl) derivative. J. Chromatogr. B 2003, 798, 87–99.
[78]
Martens-Lobenhoffer, J.; Krug, O.; Bode-B?ger, S.M. Determination of arginine and asymmetric dimethylarginine (ADMA) in human plasma by liquid chromatography/mass spectrometry with the isotope dilution technique. J. Mass. Spectrom 2004, 39, 1287–1294.
[79]
Schwedhelm, E.; Tan-Andresen, J.; Maas, R.; Riederer, U.; Schulze, F.; B?ger, R.H. Liquid chromatography-tandem mass spectrometry method for the analysis of asymmetric dimethylarginine in human plasma. Clin. Chem 2005, 51, 1268–1271.
[80]
Martens-Lobenhoffer, J.; Krug, O.; Bode-B?ger, S.M. Fast and efficient determination of arginine, symmetric dimethylarginine, and asymmetric dimethylarginine in biological fluids by hydrophilic-Interaction liquid chromatography–electrospray tandem mass spectrometry. Clin. Chem 2006, 52, 488–493.
[81]
Wilcken, D.E.; Wang, J.; Sim, A.S.; Green, K.; Wilcken, B. Asymmetric dimethylarginine in homocystinuria due to cystathionine beta-synthase deficiency: Relevance of renal function. J. Inherit. Metab. Dis 2006, 29, 30–37.
[82]
Bishop, M.J.; Crow, B.; Norton, D.; Paliakov, E.; George, J.; Bralley, J.A. Direct analysis of un-derivatized asymmetric dimethylarginine (ADMA) and l-arginine from plasma using mixed-mode ion-exchange liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2007, 859, 164–169.
[83]
Schwedhelm, E.; Maas, R.; Tan-Andresen, J.; Schulze, F.; Riederer, U.; B?ger, R.H. High-Throughput liquid chromatographic-tandem mass spectrometric determination of arginine and dimethylated arginine derivatives in human and mouse plasma. J. Chromatogr. B 2007, 851, 211–219.
[84]
Weaving, G.; Rocks, B.F.; Bailey, M.P.; Titheradge, M.A. Arginine and methylated arginines in human plasma and urine measured by tandem mass spectrometry without the need for chromatography or sample derivatisation. J. Chromatogr. B 2008, 874, 27–32.
[85]
Zhang, W.; Zhou, C.; Xie, J.; Chen, B.; Chang, L. Serum asymmetric dimethylarginine and endothelial function after renal transplantation. J. Cent. South Univ. (Med. Sci.) 2009, 34, 289–294.
[86]
El-Khoury, J.M.; Bunch, D.R.; Reineks, E.; Jackson, R.; Steinle, R.; Wang, S. A simple and fast liquid chromatography-tandem mass spectrometry method for measurement of underivatized l-arginine, symmetric dimethylarginine, and asymmetric dimethylarginine and establishment of the reference ranges. Anal. Bioanal. Chem 2012, 402, 771–779.
[87]
Tain, Y.L.; Huang, L.T. Asymmetric dimethylarginine: Clinical applications in pediatric medicine. J. Formos. Med. Assoc 2011, 110, 70–77.
[88]
Wang, S.; Vicente, F.B.; Miller, A.; Brooks, E.R.; Price, H.E.; Smith, F.A. Measurement of arginine derivatives in pediatric patients with chronic kidney disease using high-performance liquid chromatography-tandem mass spectrometry. Clin. Chem. Lab. Med 2007, 45, 1305–1312.
[89]
Jehli?ka, P.; Sto?icky, F.; Mayer, O., Jr; Varva?ovská, J.; Racek, J.; Trefil, L.; Siala, K. Asymmetric dimethylarginine and the effect of folate substitution in children with familial hypercholesterolemia and diabetes mellitus type 1. Physiol. Res. 2009, 58, 179–184.
[90]
Heilman, K.; Zilmer, M.; Zilmer, K.; Kool, P.; Tillmann, V. Elevated plasma adiponectin and decreased plasma homocysteine and asymmetric dimethylarginine in children with type 1 diabetes. Scand. J. Clin. Lab. Invest 2009, 69, 85–91.
[91]
Huemer, M.; Simma, B.; Mayr, D.; M?slinger, D.; Mühl, A.; Schmid, I.; Ulmer, H.; Bodamer, O.A. Free asymmetric dimethylarginine (ADMA) is low in children and adolescents with classical phenylketonuria (PKU). J. Inherit. Metab. Dis 2012. in press.
[92]
Andrade, F.; Rodríguez-Soriano, J.; Prieto, J.A.; Aguirre, M.; Ariceta, G.; Lage, S.; Azcona, I.; Prado, C.; Sanjurjo, P.; Aldámiz-Echevarría, L. Methylation cycle, arginine-creatine pathway and asymmetric dimethylarginine in paediatric renal transplant. Nephrol. Dial. Transpl 2011, 26, 328–336.
[93]
Arcos, M.I.; Fujihara, C.K.; Sesso, A.; de Almeida Prado, E.B.; de Almeida Prado, M.J.; de Nucci, G.; Zatz, R. Mechanisms of albuminuria in the chronic nitric oxide inhibition model. Am. J. Physiol. Renal. Physiol 2000, 279, 1060–1066.
[94]
Okubo, K.; Hayashi, K.; Wakino, S.; Matsuda, H.; Kubota, E.; Honda, M.; Tokuyama, H.; Yamamoto, T.; Kajiya, F.; Saruta, T. Role of asymmetrical dimethylarginine in renal microvascular endothelial dysfunction in chronic renal failure with hypertension. Hypertens. Res 2005, 28, 181–189.
[95]
Kaida, Y.; Ueda, S.; Yamagishi, S.I.; Nakayama, Y.; Ando, R.; Iwatani, R.; Fukami, K.; Okuda, S. Proteinuria elevates asymmetric dimethylarginine levels via protein arginine methyltransferase-1 overexpression in a rat model of nephrotic syndrome. Life Sci 2012. in press.
[96]
Caglar, K.; Yilmaz, M.I.; Sonmez, A.; Cakir, E.; Kaya, A.; Acikel, C.; Eyileten, T.; Yenicesu, M.; Oguz, Y.; Bilgi, C.; et al. ADMA, proteinuria, and insulin resistance in non-diabetic stage I chronic kidney disease. Kidney Int 2006, 70, 781–787.
[97]
Matsumoto, Y.; Ueda, S.; Yamagishi, S.; Matsuguma, K.; Shibata, R.; Fukami, K.; Matsuoka, H.; Imaizumi, T.; Okuda, S. Dimethylarginine dimethylaminohydrolase prevents progression of renal dysfunction by inhibiting loss of peritubular capillaries and tubulointerstitial fibrosis in a rat model of chronic kidney disease. J. Am. Soc. Nephrol 2007, 18, 1525–1533.
[98]
Yilmaz, M.I.; Saglam, M.; Caglar, K.; Cakir, E.; Ozgurtas, T.; Sonmez, A.; Eyileten, T.; Yenicesu, M.; Acikel, C.; Oguz, Y.; et al. Endothelial functions improve with decrease in asymmetric dimethylarginine (ADMA) levels after renal transplantation. Transplantation 2005, 80, 1660–1666.
[99]
Zoccali, C. Endothelial damage, asymmetric dimethylarginine and cardiovascular risk in end-stage renal disease. Blood Purif 2002, 20, 469.
[100]
Teplan, V.; Schück, O.; Racek, J.; Siroka, R.; Haluzik, M.; Kudla, M.; Vitko, S. Asymmetric dimethylarginine and adiponectin after renal transplantation: Role of obesity. J. Ren. Nutr 2008, 18, 154–157.
[101]
Teplan, V.; Maly, J.; Gürlich, R.; Teplan, V., Jr; Kudla, M.; Pit’ha, J.; Racek, J.; Haluzík, M.; Senolt, L.; Stollová, M. Muscle and fat metabolism in obesity after kidney transplantation: No effect of peritoneal dialysis or hemodialysis. J. Ren. Nutr. 2012, 22, 166–170.
[102]
Abedini, S.; Meinitzer, A.; Holme, I.; M?rz, W.; Weihrauch, G.; Fellstr?m, B.; Jardine, A.; Holdaas, H. Asymmetrical dimethylarginine is associated with renal and cardiovascular outcomes and all-cause mortality in renal transplant recipients. Kidney Int 2010, 77, 44–50.
[103]
Zhang, D.L.; Liu, J.; Liu, S.; Zhang, Y.; Liu, W.H. The differences of asymmetric dimethylarginine removal by different dialysis treatments. Ren. Fail 2010, 32, 935–940.
[104]
Maas, R. Pharmacotherapies and their influence on asymmetric dimethylargine (ADMA). Vasc. Med 2005, 10, S49–S57.
[105]
Goralczyk, T.; Tisonczyk, J.; Fijorek, K.; Undas, A. High tea and vegetable consumption is associated with low ADMA generation in older healthy subjects. Metabolism 2012, 61, 1171–1176.
[106]
Saran, R.; Novak, J.E.; Desai, A.; Abdulhayoglu, E.; Warren, J.S.; Bustami, R.; Handelman, G.J.; Barbato, D.; Weitzel, W.; D’Alecy, L.G.; et al. Impact of vitamin E on plasma asymmetric dimethylarginine (ADMA) in chronic kidney disease (CKD): A pilot study. Nephrol. Dial. Transpl 2003, 18, 2415–2420.
[107]
Nanayakkara, P.W.; Kiefte-de Jong, J.C.; ter Wee, P.M.; Stehouwer, C.D.; van Ittersum, F.J.; Olthof, M.R.; Teerlink, T.; Twisk, J.W.; van Guldener, C.; Smulders, Y.M. Randomized placebo-controlled trial assessing a treatment strategy consisting of pravastatin, vitamin E, and homocysteine lowering on plasma asymmetric dimethylarginine concentration in mild to moderate CKD. Am. J. Kidney Dis 2009, 53, 41–50.
[108]
Teplan, V.; Schück, O.; Racek, J.; Mareckova, O.; Stollova, M.; Hanzal, V.; Maly, J. Reduction of plasma asymmetric dimethylarginine in obese patients with chronic kidney disease after three years of a low-protein diet supplemented with keto-amino acids: A randomized controlled trial. Wien. Klin. Wochenschr 2008, 120, 478–485.
Urquhart, B.L.; House, A.A. Assessing plasma total homocysteine in patients with end-stage renal disease. Perit. Dial. Int 2007, 27, 476–488.
[111]
Thaha, M.; Widodo, P.W.; Yogiantoro, M.; Tomino, Y. Intravenous N-acetylcysteine during hemodialysis reduces asymmetric dimethylarginine level in end-stage renal disease patients. Clin. Nephrol 2008, 69, 24–32.
[112]
Ruiz, M.C.; Moreno, J.M.; Ruiz, N.; Vargas, F.; Asensio, C.; Osuna, A. Effect of statin treatment on oxidative stress and renal function in renal transplantation. Transpl. Proc 2006, 38, 2431–2433.
[113]
Trimarchi, H.M.; Brennan, S.; González, J.M.; Suki, W.N. Effects of the statins in kidney transplantation. Medicina (B. Aires) 2000, 60, 457–465.
[114]
Panichi, V.; Mantuano, E.; Paoletti, S.; Santi, S.; Manca Rizza, G.; Cutrupi, S.; Pizzini, P.; Spoto, B.; Tripepi, G.; Zoccali, C. Effect of simvastatin on plasma asymmetric dimethylarginine concentration in patients with chronic kidney disease. J. Nephrol 2008, 21, 38–44.
[115]
Lim, A.; Manley, K.J.; Roberts, M.A.; Fraenkel, M.B. Fish oil treatment for kidney transplant recipients: A meta-analysis of randomized controlled trials. Transplantation 2007, 83, 831–838.
[116]
Beavers, K.M.; Beavers, D.P.; Bowden, R.G.; Wilson, R.L.; Gentile, M. Omega-3 fatty acid supplementation and total homocysteine levels in end-stage renal disease patients. Nephrology (Carlton) 2008, 13, 284–288.
[117]
Ma?yszko, J.; Ma?yszko, J.S.; Brzósko, S.; Pawlak, K.; My?liwiec, M. Effects of fluvastatin on homocysteine and serum lipids in kidney allograft recipients. Ann. Transpl 2002, 7, 52–54.
[118]
Vos, I.H.; Rabelink, T.J.; Dorland, B.; Loos, R.; van Middelaar, B.; Grone, H.J.; Joles, J.A. l-Arginine supplementation improves function and reduces inflamation in renal allografts. J. Am. Soc. Nephrol 2001, 12, 361–367.
[119]
Baylis, C. Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat. Clin. Pract. Nephrol 2006, 2, 209–220.
[120]
El-Mesallamy, H.O.; Abdel Hamid, S.G.; Gad, M.Z. Oxidative stress and asymmetric dimethylarginine are associated with cardiovascular complications in hemodialysis patients: Improvements by l-arginine intake. Kidney Blood Press. Res 2008, 31, 189–195.
[121]
Bodamer, O.A.; Sahoo, T.; Beaudet, A.L.; O’Brien, W.E.; Bottiglieri, T.; Stockler-Ipsiroglu, S.; Wagner, C.; Scaglia, F. Creatine metabolism in combined methylmalonic aciduria and homocystinuria. Ann. Neurol 2005, 57, 557–560.
[122]
Schramm, L.; La, M.; Heidbreder, E.; Hecker, M.; Beckman, J.S.; Lopau, K.; Zimmermann, J.; Rendl, J.; Reiners, C.; Winderl, S.; et al. l-Arginine deficiency and supplementation in experimental acute renal failure and in human kidney transplantation. Kidney Int 2002, 61, 1423–1432.
[123]
Schwedhelm, E.; Maas, R.; Freese, R.; Jung, D.; Lukacs, Z.; Jambrecina, A.; Spickler, W.; Schulze, F.; B?ger, R.H. Pharmacokinetic and pharmacodynamic properties of oral l-citrulline and l-arginine: Impact on nitric oxide metabolism. Br. J. Clin. Pharmacol 2008, 65, 51–59.