全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Rice Bran Oil on the Intestinal Microbiota and Metabolism of Isoflavones in Adult Mice

DOI: 10.3390/ijms130810336

Keywords: rice bran oil, equol, daidzein, mice, intestinal microbiota

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study examined the effects of rice bran oil (RBO) on mouse intestinal microbiota and urinary isoflavonoids. Dietary RBO affects intestinal cholesterol absorption. Intestinal microbiota seem to play an important role in isoflavone metabolism. We hypothesized that dietary RBO changes the metabolism of isoflavonoids and intestinal microbiota in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 10% RBO diet (RO group) and those fed a 0.05% daidzein with 10% lard control diet (LO group) for 30 days. Urinary amounts of daidzein and dihydrodaidzein were significantly lower in the RO group than in the LO group. The ratio of equol/daidzein was significantly higher in the RO group ( p < 0.01) than in the LO group. The amount of fecal bile acids was significantly greater in the RO group than in the LO group. The composition of cecal microbiota differed between the RO and LO groups. The occupation ratios of Lactobacillal es were significantly higher in the RO group ( p < 0.05). Significant positive correlation ( r = 0.591) was observed between the occupation ratios of Lactobacillales and fecal bile acid content of two dietary groups. This study suggests that dietary rice bran oil has the potential to affect the metabolism of daidzein by altering the metabolic activity of intestinal microbiota.

References

[1]  Lieberman, S. Are the differences between estradiol and other estrogens, naturally occurring or synthetic, merely semantical? J. Clin. Endocrinol. Metabol 1996, 81, 850–851.
[2]  Chang, Y.C.; Nair, M.G. Metabolism of daidzein and genistein by intestinal bacteria. J. Nat. Prod 1995, 58, 1892–1896.
[3]  Setchell, K.D.; Borriello, S.P.; Hulme, P.; Kirk, D.N.; Axelson, M. Nonsteroidal estrogens of dietary origin: Possible roles in hormone-dependent disease. Am. J. Clin. Nutr 1984, 40, 569–578.
[4]  Bowey, E.; Adlercreutz, H.; Rowland, I. Metabolism of isoflavones and lignans by the gut microflora: A study in germ-free and human flora associated rats. Food Chem. Toxicol 2003, 41, 631–636.
[5]  Sathyamoorthy, N.; Wang, T.T. Differential effects of dietary phyto-oestrogens daidzein and equol on human breast cancer MCF-7 cells. Eur. J. Cancer 1997, 33, 2384–2389.
[6]  Akaza, H.; Miyanaga, N.; Takashima, N.; Naito, S.; Hirao, Y.; Tsukamoto, T.; Fujioka, T.; Mori, M.; Kim, W.J.; Song, J.M.; et al. Comparisons of percent equol producers between prostate cancer patients and controls: Case-controlled studies of isoflavones in Japanese, Korean and American residents. Jpn. J. Clin. Oncol 2004, 34, 86–89.
[7]  Ishiwata, N.; Melby, M.K.; Mizuno, S.; Watanabe, S. New equol supplement for relieving menopausal symptoms: Randomized, placebo-controlled trial of Japanese women. Menopause 2009, 16, 141–148.
[8]  Ishimi, Y. Dietary equol and bone metabolism in postmenopausal Japanese women and osteoporotic mice. J. Nutr 2010, 140, 1373S–1376S.
[9]  Frankenfeld, C.L.; Atkinson, C.; Thomas, W.K.; Goode, E.L.; Gonzalez, A.; Jokela, T.; W?h?l?, K.; Schwartz, S.M.; Li, S.S.; Lampe, J.W. Familial correlations, segregation analysis, and nongenetic correlates of soy isoflavone-metabolizing phenotypes. Exp. Biol. Med. (Maywood) 2004, 229, 902–913.
[10]  Setchell, K.D.; Cole, S.J. Method of defining equol-producer status and its frequency among vegetarians. J. Nutr 2006, 136, 2188–2193.
[11]  Rowland, I.R.; Wiseman, H.; Sanders, T.A.; Adlercreutz, H.; Bowey, E.A. Interindividual variation in metabolism of soy isoflavones and lignans: Influence of habitual diet on equol production by the gut microflora. Nutr. Cancer 2000, 36, 27–32.
[12]  Sugano, M.; Tsuji, E. Rice bran oil and cholesterol metabolism. J. Nutr 1997, 127, 521S–524S.
[13]  Wilson, T.A.; Nicolosi, R.J.; Woolfrey, B.; Kritchevsky, D. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters. J. Nutr. Biochem 2007, 18, 105–112.
[14]  Chou, T.W.; Ma, C.Y.; Cheng, H.H.; Chen, Y.Y.; Lai, M.H. A rice bran oil diet improves lipid abnormalities and suppress hyperinsulinemic responses in rats with streptozotocin/nicotinamide-induced type 2 diabetes. J. Clin. Biochem. Nutr 2009, 45, 29–36.
[15]  Binder, H.J.; Filburn, B.; Floch, M. Bile acid inhibition of intestinal anaerobic organisms. Am. J. Clin. Nutr 1975, 28, 119–125.
[16]  Floch, M.H.; Gershengoren, W.; Diamond, S.; Hersh, T. Cholic acid inhibition of intestinal bacteria. Am. J. Clin. Nutr 1970, 23, 8–10.
[17]  Rowland, I.; Faughnan, M.; Hoey, L.; W?h?l?, K.; Williamson, G.; Cassidy, A. Bioavailability of phyto-oestrogens. Br. J. Nutr 2003, 89 Suppl 1, S45–58.
[18]  Braune, A.; Bunzel, M.; Yonekura, R.; Blaut, M. Conversion of dehydrodiferulic acids by human intestinal microbiota. J. Agric. Food Chem 2009, 57, 3356–3362.
[19]  Lai, K.K.; Lorca, G.L.; Gonzalez, C.F. Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats. Appl. Environ. Microbiol 2009, 75, 5018–5024.
[20]  Donaghy, J.; Kelly, P.F.; McKay, A.M. Detection of ferulic acid esterase production by Bacillus spp. and Lactobacilli. Appl. Microbiol. Biotechnol 1998, 50, 257–260.
[21]  Ausman, L.M.; Rong, N.; Nicolosi, R.J. Hypocholesterolemic effect of physically refined rice bran oil: Studies of cholesterol metabolism and early atherosclerosis in hypercholesterolemic hamsters. J. Nutr. Biochem 2005, 16, 521–529.
[22]  Yamakoshi, J.; Piskula, M.K.; Izumi, T.; Tobe, K.; Saito, M.; Kataoka, S.; Obata, A.; Kikuchi, M. Isoflavone aglycone-rich extract without soy protein attenuates atherosclerosis development in cholesterol-fed rabbits. J. Nutr 2000, 130, 1887–1893.
[23]  Nagashima, K.; Hisada, T.; Sato, M.; Mochizuki, J. Application of new primer-enzyme combinations to terminal restriction fragment length polymorphism profiling of bacterial populations in human feces. Appl. Environ. Microbiol 2003, 69, 1251–1262.
[24]  Nagashima, K.; Mochizuki, J.; Hisada, T.; Suzuki, S.; Shimomura, K. Phylogenetic analysis of 16S ribosomal RNA gene sequences from human fecal microbiota and improved utility of terminal restriction fragment length polymorphism profiling. Biosci. Microflora 2006, 25, 99–107.
[25]  Fleissner, C.K.; Huebel, N.; Abd El-Bary, M.M.; Loh, G.; Klaus, S.; Blaut, M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr 2010, 104, 919–929.
[26]  Xu, X.; Harris, K.S.; Wang, H.J.; Murphy, P.A.; Hendrich, S. Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr 1995, 125, 2307–2315.
[27]  Floch, M.H.; Binder, H.J.; Filburn, B.; Gershengoren, W. The effect of bile acids on intestinal microflora. Am. J. Clin. Nutr 1972, 25, 1418–1426.
[28]  De Smet, I.; de Boever, P.; Verstraete, W. Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Br. J. Nutr 1998, 79, 185–194.
[29]  Du Toit, M.; Franz, C.M.; Dicks, L.M.; Schillinger, U.; Haberer, P.; Warlies, B.; Ahrens, F.; Holzapfel, W.H. Characterisation and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int. J. Food Microbiol 1998, 40, 93–104.
[30]  Pereira, D.I.; Gibson, G.R. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Environ. Microbiol 2002, 68, 4689–4693.
[31]  Bhathena, J.; Kulamarva, A.; Martoni, C.; Urbanska, A.M.; Prakash, S. Preparation and in vitro analysis of microencapsulated live Lactobacillus fermentum 11976 for augmentation of feruloyl esterase in the gastrointestinal tract. Biotechnol. Appl. Biochem 2008, 50, 1–9.
[32]  Nishizawa, C.; Ohta, T.; Egashira, Y.; Sanada, H. Ferulic acid esterase activities of typical intestinal bacteria. Food Sci. Technol. Int. (Tokyo) 1998, 4, 94–97.
[33]  Counotte, G.H.; Prins, R.A.; Janssen, R.H.; Debie, M.J. Role of Megasphaera elsdenii in the fermentation of dl-[2-C]lactate in the rumen of dairy cattle. Appl. Environ. Microbiol 1981, 42, 649–655.
[34]  Kabel, M.A.; Kortenoeven, L.; Schols, H.A.; Voragen, A.G. In vitro fermentability of differently substituted xylo-oligosaccharides. J. Agric. Food Chem 2002, 50, 6205–6210.
[35]  Minamida, K.; Tanaka, M.; Abe, A.; Sone, T.; Tomita, F.; Hara, H.; Asano, K. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine. J. Biosci. Bioeng 2006, 102, 247–250.
[36]  Tamura, M.; Iwami, T.; Hori, S.; Nakagawa, H. Lactobacillus fermentum ATCC9338: Effects on mouse intestinal flora and plasma concentration of isoflavonoids. Food Sci. Technol. Res 2010, 16, 473–478.
[37]  Tamura, M.; Hori, S.; Nakagawa, H. Lactobacillus rhamnosus JCM 2771: Impact on metabolism of isoflavonoids in the fecal flora from a male equol producer. Curr. Microbiol 2011, 62, 1632–1637.
[38]  Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031.
[39]  Armougom, F.; Henry, M.; Vialettes, B.; Raccah, D.; Raoult, D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One 2009, 4, e7125.
[40]  Mozes, S.; Bujnáková, D.; Sefcíková, Z.; Kmet, V. Developmental changes of gut microflora and enzyme activity in rat pups exposed to fat-rich diet. Obesity (Silver Spring) 2008, 16, 2610–2615.
[41]  Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem 1974, 20, 470–475.
[42]  Spayd, R.W.; Bruschi, B.; Burdick, B.A.; Dappen, G.M.; Eikenberry, J.N.; Esders, T.W.; Figueras, J.; Goodhue, C.T.; LaRossa, D.D.; Nelson, R.W.; et al. Multilayer film elements for clinical analysis: Applications to representative chemical determinations. Clin. Chem 1978, 24, 1343–1350.
[43]  Takayama, M.; Itoh, S.; Nagasaki, T.; Tanimizu, I. A new enzymatic method for determination of serum choline-containing phospholipids. Clin. Chim. Acta 1977, 79, 93–98.
[44]  Kanamoto, R.; Kimura, S.; Okamura, G. Cholesterol lowering effect of soybean lipophilic proteins associated with phospholipids in rat. Soy Protein Res. Jpn 2007, 10, 83–87.
[45]  Matsuki, T. Procedure of DNA extraction from fecal sample for the analysis of intestinal microflora. J. Intestinal. Microbiol 2006, 20, 259–262.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133