全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cyclodextrin-Based [1]Rotaxanes on Gold Nanoparticles

DOI: 10.3390/ijms130810132

Keywords: azobenzene, complexation, cyclodextrin, gold nanoparticle, [1]rotaxane

Full-Text   Cite this paper   Add to My Lib

Abstract:

Transformation of mechanically interlocked molecules (e.g., rotaxanes and catenanes) into nanoscale materials or devices is an important step towards their real applications. In our current work, an azobenzene-modified β-cyclodextrin (β-CD) derivative that can form a self-inclusion complex in aqueous solution was prepared. The self-included β-CD derivative was then functionalized onto a gold nanoparticle (AuNP) surface via a ligand-exchange reaction in aqueous solution, leading to the formation of AuNP-[1]rotaxane hybrids. Corresponding non-self-included β-CD derivative functionalized AuNPs were also developed in a DMF/H 2O mixture solution for control experiments. These hybrids were fully characterized by UV-vis and circular dichroism spectroscopies, together with transmission electron microscopy (TEM). The competitive binding behavior of the hybrids with an adamantane dimer was investigated.

References

[1]  Balzani, V.; Credi, A.; Venturi, M. Light powered molecular machines. Chem. Soc. Rev 2009, 38, 1542–1550.
[2]  Fang, L.; Olson, M.A.; Benítez, D.; Tkatchouk, E.; Goddard, W.A., III; Stoddart, J.F. Mechanically bonded macromolecules. Chem. Soc. Rev. 2010, 39, 17–29.
[3]  Qu, D.H.; Tian, H. Novel and efficient templates for assembly of rotaxanes and catenanes. Chem. Sci 2011, 2, 1011–1015.
[4]  Beves, J.E.; Blight, B.A.; Campbell, C.J.; Leigh, D.A.; McBurney, R.T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. Int. Ed 2011, 50, 9260–9327.
[5]  Loeb, S.J.; Wisner, J.A. [2]Rotaxane molecular shuttles employing 1,2-bis(pyridinium)ethane binding sites and dibenzo-24-crown-8 ethers. Chem. Commun 2000, 1939–1940.
[6]  Hsueh, S.-Y.; Lai, C.-C.; Chiu, S.-H. Squaraine-based [2]rotaxanes that function as visibly active molecular switches. Chem. Eur. J 2010, 16, 2997–3000.
[7]  Zhu, L.; Lu, M.; Qu, D.; Wang, Q.; Tian, H. Coordination-assembly for quantitative construction of bis-branched molecular shuttles. Org. Biomol. Chem 2011, 9, 4226–4233.
[8]  Ma, X.; Qu, D.; Ji, F.; Wang, Q.; Zhu, L.; Xu, Y.; Tian, H. A light-driven [1]rotaxane via self-complementary and Suzuki-coupling capping. Chem. Commun 2007, 2007, 1409–1411.
[9]  Franchi, P.; Fani, M.; Mezzina, E.; Lucarini, M. Increasing the persistency of stable free-radicals: Synthesis and characterization of a nitroxide based [1]Rotaxane. Org. Lett 2008, 10, 1901–1904.
[10]  Zheng, X.; Mayer, M.F. Actuator prototype: Capture and release of a self-entangled [1]rotaxane. J. Am. Chem. Soc 2010, 132, 3274–3276.
[11]  Davis, J.J.; Orlowski, G.A.; Rahman, H.; Beer, P.D. Mechanically interlocked and switchable molecules at surfaces. Chem. Commun 2010, 46, 54–63.
[12]  Willner, I.; Pardo-Yissar, V.; Katz, E.; Ranjit, K.T. A photoactivated ‘molecular train’ for optoelectronic applications: light-stimulated translocation of a β-cyclodextrin receptor within a stoppered azobenzene-alkyl chain supramolecular monolayer assembly on a Au-electrode. J. Electroanal. Chem 2001, 497, 172–177.
[13]  Coskun, A.; Wesson, P.J.; Klajn, R.; Trabolsi, A.; Fang, L.; Olson, M.A.; Dey, S.K.; Grzybowski, B.A.; Stoddart, J.F. Molecular-mechanical switching at the nanoparticle-solvent interface: Practice and theory. J. Am. Chem. Soc 2010, 132, 4310–4320.
[14]  Zhu, L.; Yan, H.; Nguyen, K.T.; Tian, H.; Zhao, Y. Sequential self-assembly for construction of Pt(II)-bridged [3]rotaxanes on gold nanoparticles. Chem. Commun 2012, 48, 4290–4292.
[15]  Liu, Y.; Zhao, Y.-L.; Zhang, H.-Y.; Fan, Z.; Wen, G.-D.; Ding, F. Spectrophotometric study of inclusion complexation of aliphatic alcohols by β-cyclodextrins with azobenzene tether. J. Phys. Chem. B 2004, 108, 8836–8843.
[16]  Inoue, Y.; Miyauchi, M.; Nakajima, H.; Takashima, Y.; Yamaguchi, H.; Harada, A. Self-threading of a poly(ethylene glycol) chain in a cyclodextrin-ring: Control of the exchange dynamics by chain length. J. Am. Chem. Soc 2006, 128, 8994–8995.
[17]  Inoue, Y.; Kuad, P.; Okumura, Y.; Takashima, Y.; Yamaguchi, H.; Harada, A. Thermal and photochemical switching of conformation of poly(ethylene glycol)-substituted cyclodextrin with an azobenzene group at the chain end. J. Am. Chem. Soc 2007, 129, 6396–6394.
[18]  Liu, Y.; Flood, A.H.; Stoddart, J.F. Thermally and electrochemically controllable self-complexing molecular switches. J. Am. Chem. Soc 2004, 126, 9150–9151.
[19]  Zhu, L.; Zhang, D.; Qu, D.; Wang, Q.; Ma, X.; Tian, H. Dual-controllable stepwise supramolecular interconversions. Chem. Commun 2010, 46, 2587–2589.
[20]  Zhu, L.; Ma, X.; Ji, F.; Wang, Q.; Tian, H. Effective Enhancement of fluorescence signals in rotaxane-doped reversible hydrosol–gel systems. Chem. Eur. J 2007, 13, 9216–9222.
[21]  Byun, H.S.; Zhong, N.; Bittman, R. 6A-O-p-toluenesulfonyl-beta-cyclodextrin. Org. Synth 2000, 77, 225–230.
[22]  Grabar, K.C.; Freeman, R.G.; Hommer, M.B.; Natan, M.J. Preparation and characterization of Au colloid monolayers. Anal. Chem 1995, 67, 735–743.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133