The seeds of Vigna genus are important food resources and there have already been many reports regarding their bioactivities. In our preliminary bioassay, the chloroform layer of methanol extracts of V. vexillata demonstrated significant anti-inflammatory bioactivity. Therefore, the present research is aimed to purify and identify the anti-inflammatory principles of V. vexillata. One new sterol ( 1) and two new isoflavones ( 2, 3) were reported from the natural sources for the first time and their chemical structures were determined by the spectroscopic and mass spectrometric analyses. In addition, 37 known compounds were identified by comparison of their physical and spectroscopic data with those reported in the literature. Among the isolates, daidzein ( 23), abscisic acid ( 25), and quercetin ( 40) displayed the most significant inhibition of superoxide anion generation and elastase release.
References
[1]
Shu, L.; Cheung, K.L.; Khor, T.O.; Chen, C.; Kong, A.N. Phytochemicals: Cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev 2010, 29, 483–502.
[2]
Johnson, S.M.; Wang, X.; Evers, B.M. Triptolide inhibits proliferation and migration of colon cancer cells by inhibition of cell cycle regulators and cytokine receptors. J. Surg. Res 2011, 168, 197–205.
[3]
Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep 2000, 17, 215–234.
[4]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 2003, 23, 363–398.
[5]
Bar-Sela, G.; Epelbaum, R.; Schaffer, M. Curcumin as an anti-cancer agent: Review of the gap between basic and clinical applications. Curr. Med. Chem 2010, 17, 190–197.
[6]
Na, H.K.; Kim, E.H.; Jung, J.H.; Lee, H.H.; Hyun, J.W.; Surh, Y.J. (?)-Epigallocatechin gallate induces Nrf 2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells. Arch. Biochem. Biophys. 2008, 476, 171–177.
[7]
Swami, S.; Krishnan, A.V.; Moreno, J.; Bhattacharyya, R.S.; Gardner, C.; Brooks, J.D.; Peehl, D.M.; Feldman, D. Inhibition of prostaglandin synthesis and actions by genistein in human prostate cancer cells and by soy isoflavones in prostate cancer patients. Int. J. Cancer 2009, 124, 2050–2059.
[8]
Zhou, Y.Y.; Luo, S.H.; Yi, T.S.; Li, C.H.; Luo, Q.; Hua, J.; Liu, Y.; Li, S.H. Secondary metabolites from Glycine soja and their growth inhibitory effect against Spodoptera litura. J. Agric. Food Chem 2011, 59, 6004–6010.
[9]
Gunjatkar, N.; Vartak, V.D. Enumeration of wild legumes from Pune district, Maharashtra State. J. Econ. Tax. Bot 1982, 3, 1–9.
[10]
Siddhuraju, P.; Vijayakumari, K.; Janardhanan, K. Chemical analysis and nutritional assessment of the less known pulses, Vigna aconitifolia (Jacq.) Marechal and Vigna vexillata (L.) A. Rich. Plant Food Hum. Nutr 1994, 45, 103–111.
[11]
Huang, T.C.; Ohashi, H. Flora of Taiwan, 2nd ed ed.; Editorial Committee of Flora of Taiwan: Taipei, Taiwan, 1993; Volume 3, p. 393.
[12]
Itoh, T.; Kita, N.; Kurokawa, Y.; Kobayashi, M.; Horio, F.; Furuichi, Y. Suppressive effect of a hot water extract of adzuki beans (Vigna angularis) on hyperglycemia after sucrose loading in mice and diabetic rats. Biosci. Biotechnol. Biochem 2004, 68, 2421–2426.
[13]
Itoh, T.; Kobayashi, M.; Horio, F.; Furuichi, Y. Hypoglycemic effect of hot-water extract of adzuki beans (Vigna angularis) in spontaneously diabetic KK-Ay mice. Nutrition 2009, 25, 134–141.
[14]
Mukai, Y.; Sato, S. Polyphenol-Containing adzuki bean (Vigna angularis) extract attenuates blood pressure elevation and modulates nitric oxide synthase and caveolin-1 expressions in rats with hypertension. Nutr. Metab. Cardiovasc. Dis 2009, 19, 491–497.
[15]
Mukai, Y.; Sato, S. Polyphenol-containing azuki bean (Vigna angularis) seed coats attenuate vascular oxidative stress and inflammation in spontaneously hypertensive rats. J. Nutr. Biochem 2011, 22, 16–21.
[16]
Itoh, T.; Furuichi, Y. Lowering serum cholesterol level by feeding a 40% ethanol-eluted fraction from HP-20 resin treated with hot water extract of adzuki beans (Vigna angularis) to rats fed a high-fat cholesterol diet. Nutrition 2009, 25, 318–321.
[17]
Ariga, T.; Koshiyama, I.; Fukushima, D. Antioxidative properties of procyanidins B-1 and B-3 from adzuki beans in aqueous systems. Agric. Biol. Chem 1988, 52, 2717–2722.
[18]
Doblado, R.; Zielinski, H.; Piskula, M.; Kozlowska, H.; Mu?oz, R.; Frías, J.; Vidal-Valverde, C. Effect of processing on the antioxidant vitamins and antioxidant capacity of Vigna sinensis var. carilla. J. Agric. Food Chem 2005, 53, 1215–1222.
[19]
Hori, Y.; Sato, S.; Hatai, A. Antibacterial activity of plant extracts from adzuki beans (Vigna angularis) in vitro. Phytother. Res 2006, 20, 162–164.
[20]
Franco, O.L.; Murad, A.M.; Leite, J.R.; Mendes, P.A.M.; Prates, M.V.; Bloch, C., Jr. Identification of a cowpea γ-thionin with bactericidal activity. FEBS J. 2006, 273, 3489–3497.
[21]
Itoh, T.; Itoh, Y.; Mizutani, M.; Fujishiro, K.; Furuichi, Y.; Komiya, T.; Hibasami, H. Hot-water extracts from adzuki beans (Vigna angularis) suppress not only proliferation of KATO III cells in culture but also benzo(a)pyrene-induced tumorigenesis in mouse forestomatch. J. Nutr. Sci. Vitaminol 2004, 50, 295–299.
[22]
Itoh, T.; Furuichi, Y. Hot-Water extracts from adzuki beans (Vigna angularis) stimulated not only melanogenesis in cultured mouse B16 melanoma cells but also pigmentation of hair color in C3H mice. Biosci. Biotechnol. Biochem 2005, 69, 873–882.
[23]
Joanitii, G.A.; Azevedo, R.B.; Freitas, S.M. Apoptosis and lysosome membrane permeabilization induction on breast cancer cells by an anticarcinogenic Bowman-Birk protease inhibitor from Vigna unguiculata seeds. Cancer Lett 2010, 29, 73–81.
[24]
Ambrus, G.; Ilk?y, E.; Jekkel, A.; Horváth, G.; B?cskei, Z. Microbial transformation of β-sitosterol and stigmasterol into 26-oxygenated derivatives. Steroids 1995, 60, 621–625.
[25]
Kitajima, J.; Kimizuka, K.; Tanaka, Y. New sterols and triterpenoids of Ficus pumila fruit. Chem. Pharm. Bull 1998, 46, 1408–1411.
[26]
Kuo, Y.H.; Li, Y.C. Constituents of the bark of Ficus microcarpa L.f. J. Chin. Chem. Soc 1997, 44, 321–325.
[27]
Lin, W.Y.; Yen, M.H.; Teng, C.M.; Tsai, I.L.; Chen, I.S. Cerebrosides from the rhizomes of Gynura japonica. J. Chin. Chem. Soc 2004, 51, 1429–1434.
[28]
Yasukawa, K.; Akihisa, T.; Kimura, Y.; Tamura, T.; Takido, M. Inhibitory effect of cycloartenol ferulate, a component of rice bran, on tumor promotion in two-stage carcinogenesis in mouse skin. Biol. Pharm. Bull 1998, 21, 1072–1076.
[29]
Kontiza, I.; Abatis, D.; Malakate, K.; Vagias, C.; Roussis, V. 3-Keto steroids from the marine organisms Dendrophyllia cornigera and Cymodocea nodosa. Steroids 2006, 71, 177–181.
[30]
Chen, C.Y.; Chang, F.R.; Teng, C.M.; Wu, Y.C. Cheritamine, a new N-fatty acyl tryptamine and other constituents from the stem of Annona cherimola. J. Chin. Chem. Soc 1999, 46, 77–86.
[31]
Garcez, W.S.; Martins, D.; Garcez, F.R.; Marques, M.R.; Pereira, A.A.; Oliveira, L.A.; Rondon, J.N.; Peruca, A.D. Effect of spores of saprophytic fungi on phytoalexin accumulation in seeds of frog-eye leaf spot and stem canker-resistant and -susceptible soybean (Glycine max L.) cultivars. J. Agric. Food Chem 2000, 48, 3662–3665.
[32]
Serra, S.; Barakat, A.; Fuganti, C. Chemoenzymatic resolution of cis- and trans-3,6-dihydroxy-α-ionone. Synthesis of the enantiomeric forms of dehydrovomifoliol and 8,9-dehydrotheaspirone. Tetrahedron Asymmetry 2007, 18, 2573–2580.
[33]
Jones, J.B.; Baskevitch, N. Steroids and steroidases XX (1). Aggregation in aqueous solution of steroids with stigmastane type C-17 side chains and its influence on their enzymic transformations. Steroids 1973, 22, 525–538.
[34]
Hosny, M.; Rosazza, J.P.N. Microbial hydroxylation and methylation of genistein by Streptomycetes. J. Nat. Prod 1999, 62, 1609–1612.
[35]
Lin, Y.L.; Tsai, W.J.; Chen, I.S.; Kuo, Y.H. Chemical constituents from Mucuna membranacea. J. Chin. Chem. Soc 1998, 45, 213–217.
[36]
Yang, S.W.; Cordell, G.A. Metabolism studies of indole derivatives using a staurosporine producer, Streptomyces staurosporeus. J. Nat. Prod 1997, 60, 44–48.
[37]
Smith, T.R.; Clark, A.J.; Clarkson, G.J.; Taylor, P.C.; Marsh, A. Concise enantioselective synthesis of abscisic acid and a new analogue. Org. Biomol. Chem 2006, 4, 4186–4192.
[38]
Hsieh, T.J.; Chang, F.R.; Wu, Y.C. The constituents of Cananga odorata. J. Chin. Chem. Soc 1999, 46, 607–611.
[39]
Faizi, S.; Ali, M.; Saleem, R.; Irfanullah; Bibi, S. Complete 1H and 13C NMR assignments of stigma-5-en-3-O-β-glucoside and its acetyl derivative. Magn. Reson. Chem. 2001, 39, 399–405.
[40]
Kundo, M. The nuclear magnetic resonance study of several O-disubstituted benzenes. Bull. Chem. Soc. Jpn 1972, 45, 2790–2793.
[41]
Zhong, X.N.; Otsuka, H.; Ide, T.; Hirata, E.; Takeda, Y. Hydroquinone diglycoside acyl esters from the leaves of Myrsine seguinii. Phytochemistry 1999, 52, 923–927.
[42]
Skouroumounis, G.K.; Sefton, M.A. Acid-catalyzed hydrolysis of alcohols and their β-d-glucopyranosides. J. Agric. Food Chem 2000, 48, 2033–2039.
[43]
Xu, Q.M.; Liu, Y.L.; Li, X.R.; Feng, Y.L.; Yang, S.L. Two new phenylglycol derivatives isolated from Syringa reticulata var. mandshurica and their antifungal activities. Chem. Pharm. Bull 2009, 57, 863–866.
[44]
Chiang, Y.M.; Liu, H.K.; Lo, J.M.; Chien, S.C.; Chan, Y.F.; Lee, T.H.; Su, J.K.; Kuo, Y.H. Cytotoxic constituents of leaves of Calocedrus formosana. J. Chin. Chem. Soc 2003, 50, 161–166.
[45]
Yu, Q.; Otsuka, H.; Hirata, E.; Shinzato, T.; Takeda, Y. Turpinionosides A–E: Megastigmane glucosides from leaves of Turpinia ternata Nakai. Chem. Pharm. Bull 2002, 50, 640–644.
[46]
Masamune, T.; Anetai, M.; Fukuzawa, A.; Takasugi, M.; Matsue, H.; Kobayashi, K.; Ueno, S.; Katsui, N. Glycinoeclepins, natural hatching stimuli for the soybean cyst nematode, Heterodera glycines. I. Isolation. Bull. Chem. Soc. Jpn 1987, 60, 981–999.
[47]
Ito, N.; Etoh, T.; Hagiwara, H.; Kato, M. Novel synthesis of degradation products of carotenoids, megastigmatrienone analogues and blumenol-A. J. Chem. Soc. Perkin Trans 1997, 1571–1579.
[48]
Ling, T.J.; Ling, W.W.; Chen, Y.J.; Wan, X.C.; Xia, T.; Du, X.F.; Zhang, Z.Z. Antiseptic activity and phenolic constituents of the aerial parts of Vitex negundo var. cannabifolia. Molecules 2010, 15, 8469–8477.
[49]
Weis, M.; Lim, E.K.; Bruce, N.; Bowles, D. Regioselective glucosylation of aromatic compounds: Screening of a recombinant glycosyltransferase library to identify biocatalysts. Angew. Chem. Int. Ed 2006, 45, 3534–3538.
[50]
Wang, P.H.; Lee, S.S. Polar chemical constituents from Phoebe formosana. J. Chin. Chem. Soc 1999, 46, 215–219.
[51]
Hua, Y.; Wang, H.Q. Chemical components of Anaphalis sinica Hance. J. Chin. Chem. Soc 2004, 51, 409–415.
[52]
Srivastava, A.; Shukla, Y.N. Aryl esters and a coumarin from Aygyreia speciosa. Indian J. Chem. Sect 1998, 37B, 192–194.
[53]
Scott, A.I. Interpretation Ultraviolet Spectra of Natural Products, 2nd ed ed.; Pergamon Press: New York, NY, USA; p. 1964.
[54]
Malech, H.L.; Gallin, J.I. Current concepts: Immunology neutrophils in human diseases. N. Engl. J. Med 1987, 317, 687–694.
Okajima, K.; Harada, N.; Uchiba, M. Ranitidine reduces ischemia/reperfusion-induced liver injury in rats by inhibiting neutrophil activation. J. Pharmacol. Exp. Ther 2002, 301, 1157–1165.
[57]
Ennis, M. Neutrophils in asthma pathophysiology. Curr. Allergy Asthma Rep 2003, 3, 159–165.
[58]
Vinten-Johansen, J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion Injury. Cardiovasc. Res 2004, 61, 481–497.
[59]
Hwang, T.L.; Li, G.L.; Lan, Y.H.; Chia, Y.C.; Shieh, P.W.; Wu, Y.H.; Wu, Y.C. Potent inhibition of superoxide anion production in activated human neutrophils by isopedicin, a bioactive component of the Chinese medicinal herb Fissistigma oldhamii. Free Radic. Biol. Med 2009, 46, 520–528.
[60]
Yang, M.L.; Kuo, P.C.; Hwang, T.L.; Chiou, W.F.; Qian, K.; Lai, C.Y.; Lee, K.H.; Wu, T.S. Synthesis, in vitro anti-inflammatory and cytotoxic evaluation, and mechanism of action studies of 1-benzoyl-β-carboline and 1-benzoyl-3-carboxy-β-carboline derivatives. Bioorg. Med. Chem 2011, 19, 1674–1682.