全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Cyclooxygenase Inhibitors in Combination with Taxol on Expression of Cyclin D1 and Ki-67 in a Xenograft Model of Ovarian Carcinoma

DOI: 10.3390/ijms13089741

Keywords: ovarian carcinoma, SC-560, celecoxib, taxol, cyclin D1, cell proliferation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study was designed to investigate the effects of cyclooxygenase (COX) inhibitors in combination with taxol on the expression of cyclin D1 and Ki-67 in human ovarian SKOV-3 carcinoma cells xenograft-bearing mice. The animals were treated with 100 mg/kg celecoxib (a COX-2 selective inhibitor) alone, 3 mg/kg SC-560 (a COX-1 selective inhibitor) alone by gavage twice a day, 20 mg/kg taxol alone by intraperitoneally (i.p.) once a week, or celecoxib/taxol, SC-560/celecoxib, SC-560/taxol or SC-560/celecoxib/taxol, for three weeks. To test the mechanism of the combination treatment, the index of cell proliferation and expression of cyclin D1 in tumor tissues were determined by immunohistochemistry. The mean tumor volume in the treated groups was significantly lower than control ( p < 0.05), and in the three-drug combination group, tumor volume was reduced by 58.27% ( p < 0.01); downregulated cell proliferation and cyclin D1 expression were statistically significant compared with those of the control group (both p < 0.01). This study suggests that the effects of COX selective inhibitors on the growth of tumors and decreased cell proliferation in a SKOV-3 cells mouse xenograft model were similar to taxol. The three-drug combination showing a better decreasing tendency in growth-inhibitory effect during the experiment may have been caused by suppressing cyclin D1 expression.

References

[1]  Colombo, N.; Parma, G.; Bocciolone, L.; Franchi, D.; Sideri, M.; Maqqioni, A. Medical therapy of advanced malignant epithelial tumours of the ovary. Forum (Genova) 2000, 10, 323–332.
[2]  Markman, M. Taxol: An important new drug in the management of epithelial ovarian cancer. Yale J. Biol. Med 1991, 64, 583–590.
[3]  Lawson, E.; Irada, I.; Hamdi, J.; Sevtap, S.; Mehran, M.; Kathleen, I.P.; Hilmi, O. Bioinformatic analyses identifies novel proteincoding pharmacogenomic markers associated with paclitaxel sensitivity in NCI60 cancer cell lines. BMC Med. Genomics 2011, 4, 18.
[4]  Wang, Y.; Qu, Y.; Niu, X.L.; Sun, W.J.; Zhang, X.L.; Li, L.Z. Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine 2011, 56, 365–375.
[5]  Ferrandina, G.; Lauriola, L.; Zannoni, G.F.; Faqotti, A.; Fanfani, F.; Maqqiano, N.; Gessi, M.; Mancuso, S.; Ranelletti, F.O.; Scambia, G. Increased cyclooxygenase-2 (COX-2) expression is associated with chemotherapy resistance and outcome in ovarian cancer patients. Ann. Oncol 2002, 13, 1205–1211.
[6]  Subbaramaiah, K.; Hart, J.C.; Norton, L.; Dannenberq, A.J. Microtubule-interfering agents stimulate the transcription of cyclooxygenase-2: Evidence for involvement of ERK1/2 and p38 mitogen-activated protein kinase pathways. J. Biol. Chem 2000, 275, 14838–14845.
[7]  Ferrandina, G.; Ranelletti, F.O.; Martinelli, E.; Paglia, A.; Zannoni, G.F.; Scambia, G. Cyclo-oxygenase-2 (Cox-2) expression and resistance to platinum versus platinum/paclitaxel containing chemotherapy in advanced ovarian cancer. BMC Cancer 2006, 6, 182.
[8]  Dannenberg, A.J.; Subbaramaiah, K. Targeting cyclooxygenase-2 in human neoplasia: Rationale and promise. Cancer Cell 2003, 4, 431–436.
[9]  Jaime, R.M.; Deepa, R.J.; Jeffrey, G.S.; He, X.Y.; Glenn, J.B.; Vikas, P.S. Increased endothelial uptake of paclitaxel as a potential mechanism for its antiangiogenic effects: Potentiation by Cox-2 inhibition. Int. J. Cancer 2005, 113, 490–498.
[10]  Altorki, N.K.; Keresztes, R.S.; Port, J.L.; Libby, D.M.; Korst, R.J.; Flieder, D.B.; Ferrara, C.A.; Yankelevitz, D.F.; Subbaramaiah, K.; Pasmantier, M.W.; et al. Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J. Clil. Oncol 2003, 21, 2645–2650.
[11]  Munkarah, A.R.; Genhai, Z.; Morris, R.; Baker, W.; Ceppe, G.; Diamond, M.P.; Saed, G.M. Inhibition of paclitaxel-induced apoptosis by the specific COX-2 inhibitor, NS398, in epithelial ovarian cancer cells. Gynecol Oncol 2003, 88, 429–433.
[12]  Williams, C.S.; Mann, M.; DuBois, R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 1999, 18, 7908–7916.
[13]  Gupta, R.A.; Tejada, L.V.; Tong, B.J.; Das, S.K.; Morrow, J.D.; Dey, S.K.; DuBois, R.N. Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Res 2003, 63, 906–911.
[14]  Daikoku, T.; Wang, D.Z.; Tranguch, S.; Morrow, J.D.; Orsulic, S.; DuBois, R.N.; Dey, S.K. Cyclooxygenase-1 is a potential target for prevention and treatment of ovarian epithelial cancer. Cancer Res 2005, 65, 3735–3744.
[15]  Santarius, T.; Shipley, J.; Brewer, D.; Stratton, M.R.; Cooper, C.S. A census of amplified and overexpressed human cancer genes. Nat. Rev. Cancer 2010, 10, 59–64.
[16]  Wu, G.Q.; Xie, D.; Yang, G.F.; Liao, Y.J.; Mai, S.J.; Deng, H.X.; Sze, J.; Guan, X.Y.; Zeng, Y.X.; Lin, M.C.; et al. Cell cycle-related kinase supports ovarian carcinoma cell proliferation via regulation of cyclin D1 and is a predictor of outcome in patients with ovarian carcinoma. Int. J. Cancer 2009, 125, 2631–2642.
[17]  Shakir, R.; Ngo, N.; Naresh, K.N. Correlation of cyclin D1 transcript levels, transcript type and protein expression with proliferation and histology among mantle cell lymphoma. J. Clin. Pathol 2008, 61, 920–927.
[18]  Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674.
[19]  Denkert, C.; K?bel, M.; Pest, S.; Koch, I.; Berger, S.; Schwabe, M.; Siegert, A.; Reles, A.; Klosterhalfen, B.; Hauptmann, S. Expression of cyclooxygenase-2 is an independent prognostic factor in human ovarian carcinoma. Am. J. Pathol 2002, 160, 893–903.
[20]  Worsley, S.D.; Ponder, B.A.; Davies, B.R. Overexpression of cyclin D1 in epithelial ovarian cancers. Gynecol. Oncol 1997, 64, 189–195.
[21]  Li, W.; Jiang, H.R.; Xu, X.L.; Wang, J.; Zhang, J.; Liu, M.L.; Zhai, L.Y. Cyclin d1 expression and the inhibitory effect of celecoxib on ovarian tumor growth in vivo. Int. J. Mol. Sci 2010, 11, 3999–4013.
[22]  Hida, T.; Kozaki, K.; Ito, H.; Miyaishi, O.; Tatematsu, Y.; Suzuki, T.; Matsuo, K.; Sugiura, T.; Ogawa, M.; Takahashi, T.; et al. Significant growth inhibition of human lung cancer cells both in vitro and in vivo by the combined use of a selective cyclooxygenase 2 inhibitor, JTE-522, and conventional anticancer agents. Clin. Cancer Res 2002, 8, 2443–2447.
[23]  Ju-Hee, K.; Ki-Hoon, S.; Kyung-Chae, J.; Kim, S.; Choi, C.; Lee, C.H.; Oh, S.H. Involvement of Cox-2 in the metastatic potential of chemotherapy-resistant breast cancer cells. BMC Cancer 2011, 11, 334.
[24]  Andrews, P.; Zhao, X.; Allen, J.; Li, F.; Chang, M. A comparison of the effectiveness of selected non-steroidal anti-inflammatory drugs and their derivatives against cancer cells in vitro. Cancer Chemother. Pharmacol 2008, 61, 203–214.
[25]  Bhatt, R.S.; Merchan, J.; Parker, R.; Wu, H.K.; Zhang, L.; Seery, V.; Heymach, J.V.; Atkins, M.B.; McDermott, D.; Sukhatme, V.P. A phase II pilot trial of low dose, continuous infusion, or “metronomic”, paclitaxel and oral celecoxib in patients with metastatic melanoma. Cancer 2010, 116, 1751–1756.
[26]  Gasparini, G.; Meo, S.; Comella, G.; Stani, S.C.; Mariani, L.; Gamucci, T.; Avallone, A.; Lo Vullo, S.; Mansueto, G.; Bonginelli, P.; et al. The combination of the selective cyclooxygenase-2 inhibitor celecoxib with weekly paclitaxel is a safe and active second-line therapy for non-small cell lung cancer: A phase II study with biological correlates. Cancer J 2005, 11, 209–216.
[27]  Li, W.; Wang, J.; Jiang, H.R.; Xu, X.L.; Zhang, J.; Liu, M.L.; Zhai, L.Y. Combined effects of cyclooxygenase-1 and cyclooxygenase-2 selective inhibitors on ovarian carcinoma in vivo. Int. J. Mol. Sci 2011, 12, 668–681.
[28]  Satya, N.D.; Pratima, K.; Manoj, K.S.; Suresh, C.S. Correlation of cyclin D1 expression with aggressive DNA pattern in patients with tobacco-related intraoral squamous cell carcinoma. Indian J. Med. Res 2011, 133, 381–386.
[29]  Chioniso, P.M.; Doris, M.B. Cyclin D1 degradation is sufficient to induce G1 cell cycle arrest despite constitutive expression of cyclin E2 in ovarian cancer cells. Cancer Res 2009, 69, 6565–6572.
[30]  Sakoguchi-Okada, N.; Takahashi-Yanaga, F.; Fukada, K.; Shiraishi, F.; Taba, Y.; Miwa, Y.; Morimoto, S.; Lida, M.; Sasaquri, T. Celecoxib inhibits the expression of survivin via the suppression of promoter activity in human colon cancer cells. Biochem. Pharmacol 2007, 73, 1318–1329.
[31]  Alao, J.P. The regulation of cyclin D1 degradation: Roles in cancer development and the potential for therapeutic invention. Mol. Cancer 2007, 6, 24.
[32]  Wang, J.Y.; Wang, Q.; Cui, Y.; Liu, Z.Y.; Zhao, W.; Dong, Y.; Hou, L.; Hu, G.; Luo, C.; Chen, J.; et al. Knockdown of cyclin D1 inhibits proliferation, induces apoptosis, and attenuates the invasive capacity of human glioblastoma cells. J. Neurooncol 2012, 106, 473–484.
[33]  Shan, J.; Zhao, W.; Gu, W. Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol. Cell 2009, 36, 469–476.
[34]  Kritpracha, K.; Hanprasertpong, J.; Chandeying, V.; Dechsukhum, C.; Geater, A. Survival analysis in advanced epithelial ovarian carcinoma in relation to proliferative index of MIB-1 immunostaining. J. Obstet. Gynaecol. Res 2005, 31, 268–276.
[35]  Aune, G.; Stunes, A.K.; Tingulstad, S.; Salvesen, O.; Swersen, U.; Torp, S.H. The proliferation markers Ki-67/MIB-1, phospho histone H3, and survivin may contribute in the identification of aggressive ovarian carcinomas. Int. J. Clin. Exp. Pathol 2011, 4, 444–453.
[36]  Devalapally, H.; Duan, Z.F.; Seiden, M.V.; Amiji, M.M. Modulation of drug resistance in ovarian adenocarcinoma by enhangcing intracellular ceramide using tamoxifen-loaded bioderadable polymeric nanoparticles. Clin. Cancer Res 2008, 14, 3193–3203.
[37]  Williams, C.S.; Watson, A.J.; Sheng, H.; Helou, R.; Shao, J.; DuBois, R.N. Celecoxib prevents tumor growth in vivo without toxicity to normal gut: Lack of correlation between in vitro and in vivo models. Cancer Res 2000, 60, 6045–6051.
[38]  Gerdes, J.; Lemke, H.; Baisch, H.; Wacker, H.H.; Schwab, U.; Stein, H. Cell cycle analysis of a cell proliferation associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol 1984, 133, 1710–1715.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133