Many of the plant leucine rich repeat receptor-like kinases (LRR-RLKs) have been found to regulate signaling during plant defense processes. In this study, we selected and sequenced an LRR-RLK gene, designated as Oryza rufipogon receptor-like protein kinase 1 ( OrufRPK1), located within yield QTL yld1.1 from the wild rice Oryza rufipogon (accession IRGC105491). A 2055 bp coding region and two exons were identified. Southern blotting determined OrufRPK1 to be a single copy gene. Sequence comparison with cultivated rice orthologs ( OsI219RPK1, OsI9311RPK1 and OsJNipponRPK1, respectively derived from O. sativa ssp. indica cv. MR219, O. sativa ssp. indica cv. 9311 and O. sativa ssp. japonica cv. Nipponbare) revealed the presence of 12 single nucleotide polymorphisms (SNPs) with five non-synonymous substitutions, and 23 insertion/deletion sites. The biological role of the OrufRPK1 as a defense related LRR-RLK is proposed on the basis of cDNA sequence characterization, domain subfamily classification, structural prediction of extra cellular domains, cluster analysis and comparative gene expression.
References
[1]
Ding, X.; Richter, T.; Chen, M.; Fujii, H.; Seo, Y.S.; Xie, M.; Zheng, X.; Kanrar, S.; Stevenson, R.A.; Dardick, C.; et al. A rice kinase-protein interaction map. Plant Physiol 2009, 149, 1478–1492.
[2]
Lehti-Shiu, M.D.; Zou, C.; Hanada, K.; Shiu, S.-H. Evolutionary History and Stress Regulation of Plant Receptor-Like Kinase/Pelle Genes. Plant Physiol 2009, 150, 12–26.
[3]
Shiu, S.-H.; Karlowski, W.M.; Pan, R.; Tzeng, Y.-H.; Mayer, K.F.X.; Li, W.-H. Comparative Analysis of the Receptor-Like Kinase Family in Arabidopsis and Rice. Plant Cell 2004, 16, 1220–1234.
[4]
Suzaki, T.; Sato, M.; Ashikari, M.; Miyoshi, M.; Nagato, Y.; Hirano, H.-Y. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 2004, 131, 5649–5657.
[5]
Sakaguchi, J.; Itoh, J.-I.; Ito, Y.; Nakamura, A.; Fukuda, H.; Sawa, S. COE1, an LRR–RLK responsible for commissural vein pattern formation in rice. Plant J 2010, 63, 405–416.
[6]
Zha, X.; Luo, X.; Qian, X.; He, G.; Yang, M.; Li, Y.; Yang, J. Over-expression of the rice LRK1 gene improves quantitative yield components. Plant Biotechnol. J 2009, 7, 611–620.
[7]
Song, W.-Y.; Wang, G.-L.; Chen, L.-L.; Kim, H.-S.; Pi, L.-Y.; Holsten, T.; Gardner, J.; Wang, B.; Zhai, W.-X.; Zhu, L.-H.; et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 1995, 270, 1804–1806.
[8]
Song, D.; Li, G.; Song, F.; Zheng, Z. Molecular characterization and expression analysis of OsBISERK1, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice. Mol. Biol. Rep 2008, 35, 275–283.
[9]
Peng, H.; Zhang, Q.; Li, Y.; Lei, C.; Zhai, Y.; Sun, X.; Sun, D.; Sun, Y.; Lu, T. A putative leucine-rich repeat receptor kinase, OsBRR1, is involved in rice blast resistance. Planta 2009, 230, 377–385.
[10]
Hu, H.; Xiong, L.; Yang, Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 2005, 222, 107–117.
[11]
Godiard, L.; Sauviac, L.; Torii, K.; Grenon, O.; Mangin, B.; Grimsley, N.; Marco, Y. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J 2003, 36, 353–365.
[12]
Ellis, J.; Dodds, P.; Pryor, T. Structure, function and evolution of plant disease resistance genes. Curr.Opin. Plant Biol 2000, 3, 278–284.
[13]
McCouch, S.; Sweeney, M.; Li, J.; Jiang, H.; Thomson, M.; Septiningsih, E.; Edwards, J.; Moncada, P.; Xiao, J.; Garris, A.; et al. Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 2007, 154, 317–339.
[14]
Moncada, P.; Martínez, C.P.; Borrero, J.; Chatel, M.; Gauch, H., Jr; Guimaraes, E.; Tohme, J.; McCouch, S.R. Quantitative trait loci for yield and yield components in an Oryza sativa ×Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor. Appl. Genet 2001, 102, 41–52.
[15]
Nguyen, B.; Brar, D.; Bui, B.; Nguyen, T.; Pham, L.; Nguyen, H. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza Rufipogon Griff., into indica rice (Oryza sativa L.). Theor. Appl. Genet 2003, 106, 583–593.
[16]
Shibata, Y.; Cabunagan, R.C.; Cabauatan, P.Q.; Choi, I.-R. Characterization of Oryza rufipogon-derived resistance to Tungro disease in rice. Plant Dis 2007, 91, 1386–1391.
[17]
Utami, D.W.; Moeljopawiro, S.; Aswidinnoor, H.; Setiawan, A.; Hanarida, I. Blast resistance genes in wild rice Oryza rufipogon and rice cultivar IR64. Indones. J. Agr 2008, 01, 71–76.
[18]
Sweeney, M.T.; Thomson, M.J.; Pfeil, B.E.; McCouch, S. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 2006, 18, 283–294.
[19]
Thomson, M.J.; Tai, T.H.; McClung, A.M.; Lai, X.H.; Hinga, M.E.; Lobos, K.B.; Xu, Y.; Martinez, C.P.; McCouch, S.R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor. Appl. Genet 2003, 107, 479–493.
[20]
Li, J.; Thomson, M.; McCouch, S.R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 2004, 168, 2187–2195.
[21]
Septiningsih, E.M.; Prasetiyono, J.; Lubis, E.; Tai, T.H.; Tjubaryat, T.; Moeljopawiro, S.; McCouch, S.R. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor. Appl. Genet 2003, 107, 1419–1432.
[22]
Xiao, J.; Li, J.; Grandillo, S.; Ahn, S.N.; Yuan, L.; Tanksley, S.D.; McCouch, S.R. Identification of trait-Improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 1998, 150, 899–909.
[23]
Song, B.-K.; Hein, I.; Druka, A.; Waugh, R.; Marshall, D.; Nadarajah, K.; Yap, S.-J.; Ratnam, W. The 172-kb genomic DNA region of the O. rufipogon yld1.1 locus: Comparative sequence analysis with O. sativa ssp. japonica and O. sativa ssp. indica. Funct. Integr. Genom 2009, 9, 97–108.
[24]
Yang, H.-J.; Yang, R.-C.; Li, Y.-Z. Genetic and Physiological Characteristics of Super High-Yieldinng Rice Cultivars; International Rice Congress: Manila, Philippines, 2002.
[25]
Letunic, I.; Doerks, T.; Bork, P. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res 2012, 40, D302–D305.
[26]
Simple Modular Architecture Research Tool (SMART), Available online: http://smart.emblheidelberg.de/ , accessed on 27 February 2012.
[27]
Dardick, C.; Chen, J.; Richter, T.; Ouyang, S.; Ronald, P. The Rice Kinase Database. A Phylogenomic Database for the Rice Kinome. Plant Physiol 2007, 143, 579–586.
[28]
Rice Kinase Database, Available online: http://phylomics.ucdavis.edu/kinase/dbsearch.shtml , accessed on 1 October 2011.
[29]
Ouyang, S.; Zhu, W.; Hamilton, J.; Lin, H.; Campbell, M.; Childs, K.; Thibaud-Nissen, F.; Malek, R.L.; Lee, Y.; Zheng, L.; et al. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 2007, 35, D883–D887.
[30]
Rice Genome Annotation Project, Available online: http://rice.plantbiology.msu.edu , accessed on 1 October 2011.
[31]
Youens-Clark, K.; Buckler, E.; Casstevens, T.; Chen, C.; DeClerck, G.; Derwent, P.; Dharmawardhana, P.; Jaiswal, P.; Kersey, P.; Karthikeyan, A.S.; et al. Gramene database in 2010: Updates and extensions. Nucleic Acids Res 2011, 39, D1085–D1094.
[32]
Gramene, Available online: http://www.gramene.org , accessed on 1 October 2011.
[33]
Shiu, S.-H.; Karlowski, W.M.; Pan, R.; Tzeng, Y.-H.; Mayer, K.F.X.; Li, W.-H. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 2004, 16, 1220–1234.
[34]
Kim, D.E.; Chivian, D.; Malmstr?m, L.; Baker, D. Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM. Proteins 2005, 61, 193–200.
[35]
Dunning, F.M.; Sun, W.; Jansen, K.L.; Helft, L.; Bent, A.F. Identification and Mutational Analysis of Arabidopsis FLS2 Leucine-Rich Repeat Domain Residues That Contribute to Flagellin Perception. Plant Cell 2007, 19, 3297–3313.
[36]
Morillo, S.A.; Tax, F.E. Functional analysis of receptor-like kinases in monocots and dicots. Curr. Opin. Plant Biol 2006, 9, 460–469.
[37]
Jung, K.-H.; Cao, P.; Seo, Y.-S.; Dardick, C.; Ronald, P.C. The Rice Kinase Phylogenomics Database: A guide for systematic analysis of the rice kinase super-family. Trends Plant Sci 2010, 15, 595–599.
[38]
Shiu, S.; Bleecker, A. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 2001, 98, 10763–10768.
[39]
Hunter, T. Tyrosine phosphorylation: past, present and future. Biochem. Soc. Trans 1996, 24, 307–327.
[40]
Dissmeyer, N.; Schnittger, A. The age of protein kinases. Methods Mol. Biol 2011, 779, 7–52.
[41]
Kornev, A.P.; Haste, N.M.; Taylor, S.S.; Ten Eyck, L.F. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. USA 2006, 103, 17783–17788.
[42]
Hanks, S.; Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification. FASEB J 1995, 9, 576–596.
[43]
Cao, Y.; Ding, X.; Cai, M.; Zhao, J.; Lin, Y.; Li, X.; Xu, C.; Wang, S. The Expression Pattern of a Rice Disease Resistance Gene Xa3/Xa26 Is Differentially Regulated by the Genetic Backgrounds and Developmental Stages That Influence Its Function. Genetics 2007, 177, 523–533.
[44]
Century, K.S.; Lagman, R.A.; Adkisson, M.; Morlan, J.; Tobias, R.; Schwartz, K.; Smith, A.; Love, J.; Ronald, P.C.; Whalen, M.C. Developmental control of Xa21-mediated disease resistance in rice. Plant J 1999, 20, 231–236.
Sun, X.; Cao, Y.; Yang, Z.; Xu, C.; Li, X.; Wang, S.; Zhang, Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J. 2004, 37, 517–527.
[47]
Bella, J.; Hindle, K.; McEwan, P.; Lovell, S. The leucine-rich repeat structure. Cell. Mol. Life Sci 2008, 65, 2307–2333.
[48]
Seeholzer, S.; Tsuchimatsu, T.; Jordan, T.; Bieri, S.; Pajonk, S.; Yang, W.; Jahoor, A.; Shimizu, K.K.; Keller, B.; Schulze-Lefert, P. Diversity at the Mla Powdery Mildew Resistance Locus from Cultivated Barley Reveals Sites of Positive Selection. Mol. Plant Microbe Interact 2010, 23, 497–509.
[49]
Zhang, X.S.; Choi, J.H.; Heinz, J.; Chetty, C.S. Domain-specific positive selection contributes to the evolution of Arabidopsis leucine-rich repeat receptor-like kinase (LRR RLK) genes. J. Mol. Evol 2006, 63, 612–621.
[50]
Wang, G.-L.; Ruan, D.-L.; Song, W.-Y.; Sideris, S.; Chen, L.; Pi, L.-Y.; Zhang, S.; Zhang, Z.; Fauquet, C.; Gaut, B.S.; et al. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 1998, 10, 765–780.
[51]
Gao, J.; Liu, J.; Li, B.; Li, Z. Isolation and purification of functional total RNA from blue-grained wheat endosperm tissues containing high levels of starches and flavonoids. Plant Mol. Biol. Rep 2001, 19, 185–186.
[52]
Burge, C.; Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol 1997, 268, 78–94.
[53]
Genscan, Available online: http://genes.mit.edu/GENSCAN.html , accessed on 9 June 2010.
[54]
Emanuelsson, O.; Brunak, S.; von Heijne, G.; Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protocol 2007, 2, 953–971.
[55]
SignalP 4.0 Server, Available online: http://www.cbs.dtu.dk/services/SignalP , accessed on 27 February 2012.
[56]
Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L.L. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol 2001, 305, 567–580.
[57]
Transmembrane Protein Topology with a Hidden Markov Model (TMHMM) Server 2.0, Available online: http://www.cbs.dtu.dk/services/TMHMM/ , accessed on 27 February 2012.
[58]
Finn, R.D.; Mistry, J.; Tate, J.; Coggill, P.; Heger, A.; Pollington, J.E.; Gavin, O.L.; Gunasekaran, P.; Ceric, G.; Forslund, K.; et al. The Pfam protein families database. Nucleic Acids Res 2010, 38, D211–D222.
[59]
Thompson, J.; Higgins, D.; Gibson, T. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22, 4673–4680.
[60]
Clustalw, Available online: http://clustalw.genome.jp/ , accessed on 27 February 2012.
[61]
Dardick, C.; Ronald, P. Plant and Animal Pathogen Recognition Receptors Signal through Non-RD Kinases. PLoS Pathogens 2006, 2, e2.
[62]
Jian, B.; Liu, B.; Bi, Y.; Hou, W.; Wu, C.; Han, T. Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol. Biol 2008, 9, 59.
[63]
Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; van Roy, N.; de Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3, research0034.1–research0034.11.
Sali, A.; Blundell, T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol 1993, 234, 779–815.
[66]
Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.; Eramian, D.; Shen, M.-Y.; Pieper, U.; Sali, A. Comparative Protein Structure Modeling Using Modeller; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2002.
[67]
Di Matteo, A.; Federici, L.; Mattei, B.; Salvi, G.; Johnson, K.; Savino, C.; de Lorenzo, G.; Tsernoglou, D.; Cervone, F. The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc. Natl. Acad. Sci. USA 2003, 100, 10124–10128.
[68]
Wang, Z.; Liu, J.; Sudom, A.; Ayres, M.; Li, S.; Wesche, H.; Powers, J.P.; Walker, N.P.C. Crystal Structures of IRAK-4 Kinase in Complex with Inhibitors: A Serine/Threonine Kinase with Tyrosine as a Gatekeeper. Structure 2006, 14, 1835–1844.
[69]
Bonneau, R.; Strauss, C.E.M.; Rohl, C.A.; Chivian, D.; Bradley, P.; Malmstr?m, L.; Robertson, T.; Baker, D. De Novo Prediction of Three-dimensional Structures for Major Protein Families. J. Mol. Biol 2002, 322, 65–78.
[70]
Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 2004, 32, W526–W531.