全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Intramolecular Distance between Amyloidogenic Domains on Amyloid Aggregation

DOI: 10.3390/ijms131012169

Keywords: amyloid, fibril, peptide aggregation, KFFE

Full-Text   Cite this paper   Add to My Lib

Abstract:

Peptide/protein aggregation is implicated in many amyloid diseases. Some amyloidogenic peptides/proteins, such as those implicated in Alzheimer’s and Parkinson’s diseases, contain multiple amyloidogenic domains connected by “linker” sequences displaying high propensities to form turn structures. Recent studies have demonstrated the importance of physicochemical properties of each amino acid contained in the polypeptide sequences in amyloid aggregation. However, effects on aggregation related to the intramolecular distance between amyloidogenic domains, which may be determined by a linker length, have yet to be examined. In the study presented here, we created peptides containing two copies of KFFE, a simple four-residue amyloidogenic domain, connected by GS-rich linker sequences with different lengths yet similar physicochemical properties. Our experimental results indicate that aggregation occurred most rapidly when KFFE domains were connected by a linker of an intermediate length. Our experimental findings were consistent with estimated entropic contribution of a linker length toward formation of (partially) structured intermediates on the aggregation pathway. Moreover, inclusion of a relatively short linker was found to inhibit formation of aggregates with mature fibril morphology. When the results are assimilated, our study demonstrates that intramolecular distance between amyloidogenic domains is an important yet overlooked factor affecting amyloid aggregation.

References

[1]  Aguzzi, A.; O’Connor, T. Protein aggregation diseases: Pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov 2010, 9, 237–248.
[2]  Goldsbury, C.; Frey, P.; Olivieri, V.; Aebi, U.; Muller, S.A. Multiple assembly pathways underlie amyloid-beta fibril polymorphisms. J. Mol. Biol 2005, 352, 282–298.
[3]  Kodali, R.; Wetzel, R. Polymorphism in the intermediates and products of amyloid assembly. Curr. Opin. Struct. Biol 2007, 17, 48–57.
[4]  Tartaglia, G.G.; Vendruscolo, M. The Zyggregator method for predicting protein aggregation propensities. Chem. Soc. Rev 2008, 37, 1395–1401.
[5]  Chiti, F.; Stefani, M.; Taddei, N.; Ramponi, G.; Dobson, C.M. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 2003, 424, 805–808.
[6]  Fernandez-Escamilla, A.M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol 2004, 22, 1302–1306.
[7]  Hu, Y.; Zheng, H.; Su, B.; Hernandez, M.; Kim, J.R. Modulation of β-amyloid aggregation by engineering the sequence connecting beta-strand forming domains. Biochim. Biophys. Acta 2012, 1824, 1069–1079.
[8]  Hernandez, M.; Golbert, S.; Zhang, L.G.; Kim, J.R. Creation of aggregation-defective α-synuclein variants by engineering the sequence connecting β-strand-forming domains. Chembiochem 2011, 12, 2630–2639.
[9]  Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci 1999, 24, 329–332.
[10]  Dobson, C.M. Protein folding and misfolding. Nature 2003, 426, 884–890.
[11]  Pawar, A.P.; Dubay, K.F.; Zurdo, J.; Chiti, F.; Vendruscolo, M.; Dobson, C.M. Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J. Mol. Biol 2005, 350, 379–392.
[12]  Lopez de la Paz, M.; Serrano, L. Sequence determinants of amyloid fibril formation. Proc. Natl. Acad. Sci. USA 2004, 101, 87–92.
[13]  Caflisch, A. Computational models for the prediction of polypeptide aggregation propensity. Curr. Opin. Chem. Biol 2006, 10, 437–444.
[14]  Cohen, S.I.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P. From macroscopic measurements to microscopic mechanisms of protein aggregation. J. Mol. Biol 2012, 421, 160–171.
[15]  Miller, Y.; Ma, B.; Nussinov, R. Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape. Chem. Rev 2010, 110, 4820–4838.
[16]  Murphy, R.M. Peptide aggregation in neurodegenerative disease. Annu. Rev. Biomed. Eng 2002, 4, 155–174.
[17]  Tjernberg, L.; Hosia, W.; Bark, N.; Thyberg, J.; Johansson, J. Charge attraction and beta propensity are necessary for amyloid fibril formation from tetrapeptides. J. Biol. Chem 2002, 277, 43243–43246.
[18]  Melquiond, A.; Mousseau, N.; Derreumaux, P. Structures of soluble amyloid oligomers from computer simulations. Proteins 2006, 65, 180–191.
[19]  Hosia, W.; Bark, N.; Liepinsh, E.; Tjernberg, A.; Persson, B.; Hallen, D.; Thyberg, J.; Johansson, J.; Tjernberg, L. Folding into a β-hairpin can prevent amyloid fibril formation. Biochemistry 2004, 43, 4655–4661.
[20]  Argos, P. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J. Mol. Biol 1990, 211, 943–958.
[21]  Wriggers, W.; Chakravarty, S.; Jennings, P.A. Control of protein functional dynamics by peptide linkers. Biopolymers 2005, 80, 736–746.
[22]  Edwards, W.R.; Busse, K.; Allemann, R.K.; Jones, D.D. Linking the functions of unrelated proteins using a novel directed evolution domain insertion method. Nucleic Acids Res 2008, 36, e78.
[23]  Chou, P.Y.; Fasman, G.D. Empirical predictions of protein conformation. Annu. Rev. Biochem 1978, 47, 251–276.
[24]  Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol 1982, 157, 105–132.
[25]  George, R.A.; Heringa, J. An analysis of protein domain linkers: Their classification and role in protein folding. Protein Eng 2002, 15, 871–879.
[26]  Zhou, H.X. Effect of backbone cyclization on protein folding stability: Chain entropies of both the unfolded and the folded states are restricted. J. Mol. Biol 2003, 332, 257–264.
[27]  Baumketner, A.; Shea, J.E. Free energy landscapes for amyloidogenic tetrapeptides dimerization. Biophys. J 2005, 89, 1493–1503.
[28]  Pallitto, M.M.; Murphy, R.M. A mathematical model of the kinetics of beta-amyloid fibril growth from the denatured state. Biophys. J 2001, 81, 1805–1822.
[29]  Rucker, A.L.; Creamer, T.P. Polyproline II helical structure in protein unfolded states: Lysine peptides revisited. Protein Sci 2002, 11, 980–985.
[30]  Gokce, I.; Woody, R.W.; Anderluh, G.; Lakey, J.H. Single peptide bonds exhibit poly(pro)II (“random coil”) circular dichroism spectra. J. Am. Chem. Soc 2005, 127, 9700–9701.
[31]  Eker, F.; Griebenow, K.; Schweitzer-Stenner, R. Stable conformations of tripeptides in aqueous solution studied by UV circular dichroism spectroscopy. J. Am. Chem. Soc 2003, 125, 8178–8185.
[32]  Tiffany, M.L.; Krimm, S. Effect of temperature on the circular dichroism spectra of polypeptides in the extended state. Biopolymers 1972, 11, 2309–2316.
[33]  LeVine, H., III. Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 1999, 309, 274–284.
[34]  Lazo, N.D.; Grant, M.A.; Condron, M.C.; Rigby, A.C.; Teplow, D.B. On the nucleation of amyloid β-protein monomer folding. Protein Sci 2005, 14, 1581–1596.
[35]  Qin, Z.; Hu, D.; Zhu, M.; Fink, A.L. Structural characterization of the partially folded intermediates of an immunoglobulin light chain leading to amyloid fibrillation and amorphous aggregation. Biochemistry 2007, 46, 3521–3531.
[36]  Munishkina, L.A.; Ahmad, A.; Fink, A.L.; Uversky, V.N. Guiding protein aggregation with macromolecular crowding. Biochemistry 2008, 47, 8993–9006.
[37]  Zhou, H.X. Loops, linkages, rings, catenanes, cages, and crowders: Entropy-based strategies for stabilizing proteins. Acc. Chem. Res 2004, 37, 123–130.
[38]  Zhou, H.X. Loops in proteins can be modeled as wormlike chains. J. Phys. Chem. B 2001, 105, 6763–6766.
[39]  Serpell, L.C.; Berriman, J.; Jakes, R.; Goedert, M.; Crowther, R.A. Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proc. Natl. Acad. Sci. USA 2000, 97, 4897–4902.
[40]  Petkova, A.T.; Ishii, Y.; Balbach, J.J.; Antzutkin, O.N.; Leapman, R.D.; Delaglio, F.; Tycko, R. A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA 2002, 99, 16742–16747.
[41]  Tartaglia, G.G.; Cavalli, A.; Pellarin, R.; Caflisch, A. Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci 2005, 14, 2723–2734.
[42]  Tofoleanu, F.; Buchete, N.V. Molecular interactions of Alzheimer’s Abeta protofilaments with lipid membranes. J. Mol. Biol 2012, 421, 572–586.
[43]  Tofoleanu, F.; Buchete, N.V. Alzheimer’s Abeta peptide interactions with lipid membranes: Fibrils, oligomers and polymorphic amyloid channels. Prion 2012, 6, 1–7.
[44]  Gobush, W.; Stockmayer, W.H.; Yamakawa, H.; Magee, W.S. Statistical mechanics of wormlike chains. 1. Asymptotic Behavior. J. Chem. Phys 1972, 57, 2839–2843.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133