全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Room Temperature Radiolytic Synthesized Cu@CuAlO2-Al2O3 Nanoparticles

DOI: 10.3390/ijms130911941

Keywords: colloidal Cu@CuAlO2-Al2O3 nanoparticles, polyvinyl pyrrolidone (PVP), gamma radiolytic method, core-shell structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

Colloidal Cu@CuAlO 2-Al 2O 3 bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a 60Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO 2-Al 2O 3 nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO 2-Al 2O 3 nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation.

References

[1]  Toshima, N.; Yonezawa, T.; Kushihashi, K. Polymer-protected palladium–platinum bimetallic clusters: Preparation, catalytic properties and structural considerations. J. Chem. Soc. Faraday Trans 1993, 89, 2537–2543.
[2]  Esumi, K.; Goino, M.; Koide, Y. Adsorption and adsolubilization by monomeric, dimeric, or trimeric quaternary ammonium surfactant at silica/water interface. J. Colloid Interface Sci 1996, 183, 539–545.
[3]  Belloni, J. Nucleation, growth and properties of nanoclusters studied by radiation chemistry: Application to catalysis. Catal. Today 2006, 113, 141–156.
[4]  Bonelli, R.; Zacchini, S.; Albonetti, S. Gold/iron carbonyl clusters for tailored Au/FeOx supported catalysts. Catalysts 2011, 2, 1–23.
[5]  Sch?n, G.; Simon, U. A fascinating new field in colloid science: Small ligand-stabilized metal clusters and possible application in microelectronics. Colloid Polym. Sci 1995, 273, 101–117.
[6]  Liu, R.S.; Chen, H.M.; Hu, S.F. Synthesis and characterization of nano metals with core-shell structure. China Part 2004, 2, 160–163.
[7]  Link, S.; El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem 1999, 103, 8410–8426.
[8]  Han, S.W.; Kim, Y.; Kim, K. Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. J. Colloid Interface Sci 1998, 208, 272–278.
[9]  Zhang, Z.; Nenoff, T.M.; Huang, J.Y.; Berry, D.T.; Provencio, P.P. Room temperature synthesis of thermally immiscible Ag-Ni nanoalloys. J. Phys. Chem 2009, 113, 1155–1159.
[10]  Mallin, M.P.; Murphy, C.J. Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett 2002, 2, 1235–1237.
[11]  Zhang, Z.; Nenoff, T.M.; Leung, K.; Ferreira, S.R.; Huang, J.Y.; Berry, D.T.; Provencio, P.P.; Stumpf, R. Room-temperature synthesis of Ag?Ni and Pd?Ni alloy nanoparticles. J. Phys. Chem 2010, 114, 14309–14318.
[12]  Abedini, A.; Saion, E.; Larki, F. Radiation-induced reduction of mixed copper and aluminum ionic aqueous solution. J. Radioanal. Nucl. Chem 2012, 292, 983–987.
[13]  Teghil, R.; D’Alessio, L.; Simone, M.; Zaccagnino, M.; Ferro, D.; Sordelet, D. Pulsed laser ablation of Al-Cu-Fe quasicrystals. Appl. Surf. Sci 2000, 168, 267–269.
[14]  Roy, D.; Kumari, S.; Mitra, R.; Manna, I. Microstructure and mechanical properties of mechanically alloyed and spark plasma sintered amorphous-nanocrystalline Al65Cu20Ti15 intermetallic matrix composite reinforced with TiO2 nanoparticles. Intermetallics 2007, 15, 1595–1605.
[15]  Denisova, J.; Katkevics, J.; Erts, D.; Viksna, A. An impedance study of complex Al/Cu-Al2O3 electrode. Conf. Ser. Mater. Sci. Eng 2011, doi:10.1088/1757-899X/23/1/012040.
[16]  Jin, S.; Shen, P.; Zhou, D.; Jiang, Q. Self-propagating high-temperature synthesis of nano-TiCx particles with different shapes by using carbon nano-tube as C source. Nanoscale Res. Lett 2011, 6, 515.
[17]  Abedini, A.; Larki, F.; Saion, E.; Zakaria, A.; Zobir Hussein, M. Influence of dose and ion concentration on formation of inary Al-Ni alloy nanoclusters. Rad. Phys. Chem 2012, 81, 1653–1658.
[18]  Naghavi, K.; Saion, E.; Rezaee, K.; Yunus, W.M.M. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation. Radiat. Phys. Chem 2010, 79, 1203–1208.
[19]  Abedini, A.; Larki, F.; Saion, E.B.; Zakaria, A.; Hussein, M.Z. Radiation formation of Al–Ni bimetallic nanoparticles in aqueous system. J. Radioanal. Nucl. Chem 2012, 292, 1–6.
[20]  Nenoff, T.M.; Jacobs, B.W.; Robinson, D.B.; Provencio, P.P.; Huang, J.; Ferreira, S.; Hanson, D.J. Synthesis and low temperature in situ sintering of uranium oxide nanoparticles. Chem. Mater 2011, 23, 5185–5190.
[21]  Zhiqiang, L.; Xiaobin, L.; Zhihong, P. The mechanism of agglomeration and control in the process of ultrafine powder prepared by wetchemical method. Chemistry 1999, 7, 54–57.
[22]  Toshima, N.; Yonezawa, T. Bimetallic nanoparticles—Novel materials for chemical and physical applications. New J. Chem 1998, 22, 1179–1201.
[23]  Wang, J.; Tsuzuki, T.; Tang, B.; Cizek, P.; Sun, L.; Wang, X. Synthesis of silica-coated ZnO nanocomposite: The resonance structure of polyvinyl pyrrolidone (PVP) as a coupling agent. Colloid Polym. Sci 2010, 288, 1705–1711.
[24]  Pattanaik, M.; Bhaumik, S.K. Adsorption behaviour of polyvinyl pyrrolidone on oxide surfaces. Mater. Lett 2000, 44, 352–360.
[25]  Naseri, M.G.; Saion, E.B.; Ahangar, H.A.; Hashim, M.; Shaari, A.H. Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method. Powder Technol 2011, 1, 80–88.
[26]  Rudolph, W.W.; Mason, R.; Pye, C.C. Aluminium (III) hydration in aqueous solution. A Raman spectroscopic investigation and an ab initio molecular orbital study of aluminium (III) water clusters. Phys. Chem. Chem. Phys 2000, 2, 5030–5040.
[27]  Yamanaka, K.; Kameda, Y.; Amo, Y.; Usuki, T. Local structure around chloride ion in anion exchange resin. J. Phys. Chem 2007, 111, 11337–11341.
[28]  Jiao, D.; Leung, K.; Rempe, S.B.; Nenoff, T.M. First principles calculations of atomic nickel redox potentials and dimerization free energies: A study of metal nanoparticle growth. J. Chem. Theory Comput 2011, 7, 485–495.
[29]  Shore, M.S.; Wang, J.; Johnston Peck, A.C.; Oldenburg, A.L.; Tracy, J.B. Synthesis of Au (Core)/Ag (Shell) nanoparticles and their conversion to AuAg alloy nanoparticles. Small 2011, 7, 230–234.
[30]  Maensiri, S.; Laokul, P.; Promarak, V. Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate dihydrate and poly(vinyl pyrrolidone). J. Cryst. Growth 2006, 289, 102–106.
[31]  Sui, X.; Liu, Y.; Shao, C.; Xu, C. Structural and photoluminescent properties of ZnO hexagonal nanoprisms synthesized by microemulsion with polyvinyl pyrrolidone served as surfactant and passivant. Chem. Phys. Lett 2006, 424, 340–344.
[32]  Wang, H.; Qiao, X.; Chen, J.; Wang, X.; Ding, S. Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys 2005, 94, 449–453.
[33]  Pavia, D.L. Introduction to Spectroscopy, 3th ed ed.; Brooks/Cole Pub Co: Washington DC, USA, 2009; p. 680.
[34]  Oréfice, R.L.; Vasconcelos, W.L. Sol-gel transition and structural evolution on multicomponent gels derived from the alumina-silica system. J. Sol-Gel Sci. Technol 1997, 9, 239–249.
[35]  Urretavizcaya, G.; Cavalieri, A.; López, J.M.P.; Sobrados, I.; Sanz, J. Thermal evolution of alumina prepared by the sol-gel technique. J. Mater. Synth. Process 1998, 6, 1–7.
[36]  Chen, D.H.; Wu, S.H. Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater 2000, 12, 1354–1360.
[37]  Zhang, X.; Zhou, R.; He, L.; Rao, W.; Chen, Y.; Xin, L. Influence of PVA and PEG on Fe3O4 nano-particles prepared by EB irradiation. J. Radiat. Res 2005, 6, 325–328.
[38]  Zhou, F.; Zhou, R.; Hao, X.; Wu, X.; Rao, W.; Chen, Y.; Gao, D. Influences of surfactant (PVA) concentration and pH on the preparation of copper nanoparticles by electron beam irradiation. Radiat. Phys. Chem 2008, 77, 169–173.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133