Neuroprotection aims to prevent salvageable neurons from dying. Despite showing efficacy in experimental stroke studies, the concept of neuroprotection has failed in clinical trials. Reasons for the translational difficulties include a lack of methodological agreement between preclinical and clinical studies and the heterogeneity of stroke in humans compared to homogeneous strokes in animal models. Even when the international recommendations for preclinical stroke research, the Stroke Academic Industry Roundtable (STAIR) criteria, were followed, we have still seen limited success in the clinic, examples being NXY-059 and haematopoietic growth factors which fulfilled nearly all the STAIR criteria. However, there are a number of neuroprotective treatments under investigation in clinical trials such as hypothermia and ebselen. Moreover, promising neuroprotective treatments based on a deeper understanding of the complex pathophysiology of ischemic stroke such as inhibitors of NADPH oxidases and PSD-95 are currently evaluated in preclinical studies. Further concepts to improve translation include the investigation of neuroprotectants in multicenter preclinical Phase III-type studies, improved animal models, and close alignment between clinical trial and preclinical methodologies. Future successful translation will require both new concepts for preclinical testing and innovative approaches based on mechanistic insights into the ischemic cascade.
References
[1]
The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 1995, 333, 1581–1588.
[2]
Donnan, G.A.; Davis, S.M.; Parsons, M.W.; Ma, H.; Dewey, H.M.; Howells, D.W. How to make better use of thrombolytic therapy in acute ischemic stroke. Nat. Rev. Neurol 2011, 7, 400–409.
[3]
Astrup, J.; Siesj?, B.K.; Symon, L. Thresholds in cerebral ischemia—The ischemic penumbra. Stroke 1981, 12, 723–725.
[4]
Kincses, Z.T.; Vecsei, L. Pharmacological therapy in Parkinson’s disease: Focus on neuroprotection. CNS Neurosci. Ther 2011, 17, 345–367.
[5]
Kelso, M.L.; Pauly, J.R. Therapeutic targets for neuroprotection and/or enhancement of functional recovery following traumatic brain injury. Prog. Mol. Biol. Transl. Sci 2011, 98, 85–131.
[6]
Sutherland, B.A.; Minnerup, J.; Balami, J.S.; Arba, F.; Buchan, A.M.; Kleinschnitz, C. Neuroprotection for ischaemic stroke: Translation from the bench to the bedside. Int. J. Stroke 2012, 7, 407–418.
[7]
Ginsberg, M.D. Neuroprotection for ischemic stroke: Past, present and future. Neuropharmacology 2008, 55, 363–389.
[8]
Durukan, A.; Tatlisumak, T. Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol. Biochem. Behav 2007, 87, 179–197.
[9]
O’Collins, V.E.; Macleod, M.R.; Donnan, G.A.; Horky, L.L.; van der Worp, B.H.; Howells, D.W. 1026 experimental treatments in acute stroke. Ann. Neurol 2006, 59, 467–477.
[10]
Stroke Trials Registry Home Page. Available online: http://www.strokecenter.org/trials/ , accessed on 17 August 2012.
[11]
Schaar, K.L.; Brenneman, M.M.; Savitz, S.I. Functional assessments in the rodent stroke model. Exp. Transl. Stroke Med 2010, 2, 13.
[12]
Fisher, M.; Feuerstein, G.; Howells, D.W.; Hurn, P.D.; Kent, T.A.; Savitz, S.I.; Lo, E.H. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009, 40, 2244–2250.
[13]
Stroke Therapy Academic Industry Roundtable (STAIR). Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 1999, 30, 2752–2758.
[14]
Sutherland, B.A.; Papadakis, M.; Chen, R.L.; Buchan, A.M. Cerebral blood flow alteration in neuroprotection following cerebral ischaemia. J. Physiol 2011, 589, 4105–4114.
[15]
Van der Worp, H.B.; Sena, E.S.; Donnan, G.A.; Howells, D.W.; Macleod, M.R. Hypothermia in animal models of acute ischaemic stroke: A systematic review and meta-analysis. Brain 2007, 130, 3063–3074.
[16]
De Georgia, M.A.; Krieger, D.W.; Abou-Chebl, A.; Devlin, T.G.; Jauss, M.; Davis, S.M.; Koroshetz, W.J.; Rordorf, G.; Warach, S. Cooling for Acute Ischemic Brain Damage (COOL AID): A feasibility trial of endovascular cooling. Neurology 2004, 63, 312–317.
[17]
Hemmen, T.M.; Raman, R.; Guluma, K.Z.; Meyer, B.C.; Gomes, J.A.; Cruz-Flores, S.; Wijman, C.A.; Rapp, K.S.; Grotta, J.C.; Lyden, P.D. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): Final results. Stroke 2010, 41, 2265–2270.
[18]
Krieger, D.W.; de Georgia, M.A.; Abou-Chebl, A.; Andrefsky, J.C.; Sila, C.A.; Katzan, I.L.; Mayberg, M.R.; Furlan, A.J. Cooling for acute ischemic brain damage (cool aid): An open pilot study of induced hypothermia in acute ischemic stroke. Stroke 2001, 32, 1847–1854.
[19]
The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 2002, 346, 549–556.
[20]
Yenari, M.; Kitagawa, K.; Lyden, P.; Perez-Pinzon, M. Metabolic downregulation: A key to successful neuroprotection? Stroke 2008, 39, 2910–2917.
[21]
Berger, C.; Sch?bitz, W.R.; Georgiadis, D.; Steiner, T.; Aschoff, A.; Schwab, S. Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke 2002, 33, 519–524.
[22]
Globus, M.Y.T.; Alonso, O.; Dietrich, W.D.; Busto, R.; Ginsberg, M.D. Glutamate Release and Free Radical Production Following Brain Injury: Effects of Posttraumatic Hypothermia. J. Neurochem 1995, 65, 1704–1711.
Lyden, P.D.; Krieger, D.; Yenari, M.; Dietrich, W.D. Therapeutic hypothermia for acute stroke. Int. J. Stroke 2006, 1, 9–19.
[25]
Schwab, S.; Georgiadis, D.; Berrouschot, J.; Schellinger, P.D.; Graffagnino, C.; Mayer, S.A. Feasibility and safety of moderate hypothermia after massive hemispheric infarction. Stroke 2001, 32, 2033–2035.
[26]
Macleod, M.R.; Petersson, J.; Norrving, B.; Hacke, W.; Dirnagl, U.; Wagner, M.; Schwab, S. Hypothermia for Stroke: Call to action 2010. Int. J. Stroke 2010, 5, 489–492.
[27]
He, M.; Xing, S.; Yang, B.; Zhao, L.; Hua, H.; Liang, Z.; Zhou, W.; Zeng, J.; Pei, Z. Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats. Brain Res 2007, 1181, 83–92.
[28]
Koizumi, H.; Fujisawa, H.; Suehiro, E.; Shirao, S.; Suzuki, M. Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide. Neurol. Med. Chir (Tokyo) 2011, 51, 337–343.
[29]
Seo, J.Y.; Lee, C.H.; Cho, J.H.; Choi, J.H.; Yoo, K.-Y.; Kim, D.W.; Park, O.K.; Li, H.; Choi, S.Y.; Hwang, I.K.; et al. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes. J. Neurol. Sci 2009, 285, 88–94.
Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc. Dis. 2003, 15, 222–229.
[32]
Nakase, T.; Yoshioka, S.; Suzuki, A. Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke. BMC Neurol 2011, 11, 39.
[33]
O’Collins, V.E.; Macleod, M.R.; Cox, S.F.; van Raay, L.; Aleksoska, E.; Donnan, G.A.; Howells, D.W. Preclinical drug evaluation for combination therapy in acute stroke using systematic review, meta-analysis, and subsequent experimental testing. J. Cereb. Blood Flow Metab 2011, 31, 962–975.
[34]
Ovbiagele, B.; Kidwell, C.S.; Starkman, S.; Saver, J.L. Neuroprotective agents for the treatment of acute ischemic stroke. Curr. Neurol. Neurosci. Rep 2003, 3, 9–20.
[35]
Saver, J.L.; Kidwell, C.; Eckstein, M.; Starkman, S. Prehospital neuroprotective therapy for acute stroke: Results of the Field Administration of Stroke Therapy-Magnesium (FAST-MAG) pilot trial. Stroke 2004, 35, e106–e108.
[36]
Mees, S.M.D.; Algra, A.; Vandertop, W.P.; van Kooten, F.; Kuijsten, H.A.J.M.; Boiten, J.; van Oostenbrugge, R.J.; Al-Shahi Salman, R.; Lavados, P.M.; Rinkel, G.J.E.; et al. Magnesium for aneurysmal subarachnoid haemorrhage (MASH-2): A randomised placebo-controlled trial. Lancet 2012, 380, 44–49.
[37]
Cimino, M.; Gelosa, P.; Gianella, A.; Nobili, E.; Tremoli, E.; Sironi, L. Statins: Multiple mechanisms of action in the ischemic brain. Neuroscientist 2007, 13, 208–213.
[38]
Cimino, M.; Balduini, W.; Carloni, S.; Gelosa, P.; Guerrini, U.; Tremoli, E.; Sironi, L. Neuroprotective effect of simvastatin in stroke: A comparison between adult and neonatal rat models of cerebral ischemia. Neurotoxicology 2005, 26, 929–933.
[39]
Elkind, M.S.V.; Sacco, R.L.; Macarthur, R.B.; Peerschke, E.; Neils, G.; Andrews, H.; Stillman, J.; Corporan, T.; Leifer, D.; Liu, R.; et al. High-dose lovastatin for acute ischemic stroke: Results of the phase I dose escalation neuroprotection with statin therapy for acute recovery trial (NeuSTART). Cerebrovasc. Dis 2009, 28, 266–275.
[40]
Angel, I.; Bar, A.; Horovitz, T.; Taler, G.; Krakovsky, M.; Resnitsky, D.; Rosenberg, G.; Striem, S.; Friedman, J.E.; Kozak, A. Metal ion chelation in neurodegenerative disorders. Drug Dev. Res 2002, 56, 300–309.
[41]
Diener, H.-C.; Schneider, D.; Lampl, Y.; Bornstein, N.M.; Kozak, A.; Rosenberg, G. DP-b99, a membrane-activated metal ion chelator, as neuroprotective therapy in ischemic stroke. Stroke 2008, 39, 1774–1778.
[42]
Rosenberg, G.; Bornstein, N.; Diener, H.-C.; Gorelick, P.B.; Shuaib, A.; Lees, K. The Membrane-Activated Chelator Stroke Intervention (MACSI) Trial of DP-b99 in acute ischemic stroke: A randomized, double-blind, placebo-controlled, multinational pivotal phase III study. Int. J. Stroke 2011, 6, 362–367.
[43]
ClinicalTrials.gov home page. Available online: http://www.clinicaltrials.gov , accessed on 17 August 2012.
[44]
Lampl, Y.; Boaz, M.; Gilad, R.; Lorberboym, M.; Dabby, R.; Rapoport, A.; Anca-Hershkowitz, M.; Sadeh, M. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 2007, 69, 1404–1410.
[45]
Prass, K.; Meisel, C.; H?flich, C.; Braun, J.; Halle, E.; Wolf, T.; Ruscher, K.; Victorov, I.V.; Priller, J.; Dirnagl, U.; et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J. Exp. Med 2003, 198, 725–736.
Padma Srivastava, M.V.; Bhasin, A.; Bhatia, R.; Garg, A.; Gaikwad, S.; Prasad, K.; Singh, M.B.; Tripathi, M. Efficacy of minocycline in acute ischemic stroke: A single-blinded, placebo-controlled trial. Neurol. India 2012, 60, 23–28.
[48]
He, P.; Curry, F.E. Albumin modulation of capillary permeability: role of endothelial cell [Ca2+]i. Am. J. Physiol 1993, 265, H74–H82.
[49]
Belayev, L.; Liu, Y.; Zhao, W.; Busto, R.; Ginsberg, M.D. Human albumin therapy of acute ischemic stroke: marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke 2001, 32, 553–560.
[50]
Hill, M.D.; Martin, R.H.; Palesch, Y.Y.; Tamariz, D.; Waldman, B.D.; Ryckborst, K.J.; Moy, C.S.; Barsan, W.G.; Ginsberg, M.D. The Albumin in Acute Stroke Part 1 Trial: An exploratory efficacy analysis. Stroke 2011, 42, 1621–1625.
[51]
Ginsberg, M.D.; Hill, M.D.; Palesch, Y.Y.; Ryckborst, K.J.; Tamariz, D. The ALIAS Pilot Trial: A dose-escalation and safety study of albumin therapy for acute ischemic stroke-I: Physiological responses and safety results. Stroke 2006, 37, 2100–2106.
[52]
Palesch, Y.Y.; Hill, M.D.; Ryckborst, K.J.; Tamariz, D.; Ginsberg, M.D. The ALIAS Pilot Trial: A dose-escalation and safety study of albumin therapy for acute ischemic stroke-II: Neurologic outcome and efficacy analysis. Stroke 2006, 37, 2107–2114.
[53]
Ginsberg, M.D.; Palesch, Y.Y.; Martin, R.H.; Hill, M.D.; Moy, C.S.; Waldman, B.D.; Yeatts, S.D.; Tamariz, D.; Ryckborst, K. The albumin in acute stroke (ALIAS) multicenter clinical trial: safety analysis of part 1 and rationale and design of part 2. Stroke 2011, 42, 119–127.
[54]
Chan, P.H. Role of oxidants in ischemic brain damage. Stroke 1996, 27, 1124–1129.
[55]
Green, A.R.; Ashwood, T.; Odergren, T.; Jackson, D.M. Nitrones as neuroprotective agents in cerebral ischemia, with particular reference to NXY-059. Pharmacol. Ther 2003, 100, 195–214.
[56]
Bath, P.; Gray, L.; Bath, A.; Buchan, A.; Miyata, T.; Green, A. Effects of NXY-059 in experimental stroke: An individual animal meta-analysis. Br. J. Pharmacol 2009, 157, 1157–1171.
[57]
Macleod, M.R.; van der Worp, H.B.; Sena, E.S.; Howells, D.W.; Dirnagl, U.; Donnan, G.A. Evidence for the efficacy of NXY-059 in experimental focal cerebral ischaemia is confounded by study quality. Stroke 2008, 39, 2824–2829.
[58]
Marshall, J.W.B.; Cummings, R.M.; Bowes, L.J.; Ridley, R.M.; Green, A.R. Functional and histological evidence for the protective effect of NXY-059 in a primate model of stroke when given 4 hours after occlusion. Stroke 2003, 34, 2228–2233.
[59]
Lees, K.R.; Zivin, J.A.; Ashwood, T.; Davalos, A.; Davis, S.M.; Diener, H.-C.; Grotta, J.; Lyden, P.; Shuaib, A.; H?rdemark, H.-G.; et al. NXY-059 for acute ischemic stroke. N. Engl. J. Med 2006, 354, 588–600.
[60]
Shuaib, A.; Lees, K.R.; Lyden, P.; Grotta, J.; Davalos, A.; Davis, S.M.; Diener, H.-C.; Ashwood, T.; Wasiewski, W.W.; Emeribe, U. NXY-059 for the treatment of acute ischemic stroke. N. Engl. J. Med 2007, 357, 562–571.
[61]
Diener, H.-C.; Lees, K.R.; Lyden, P.; Grotta, J.; Davalos, A.; Davis, S.M.; Shuaib, A.; Ashwood, T.; Wasiewski, W.; Alderfer, V.; et al. NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II Trials. Stroke 2008, 39, 1751–1758.
[62]
Fisher, M.; Lees, K.; Papadakis, M.; Buchan, A.M. NXY-059: brain or vessel protection. Stroke 2006, 37, 2189–2190.
[63]
Papadakis, M.; Nagel, S.; Buchan, A.M. Development and efficacy of NXY-059 for the treatment of acute ischemic stroke. Future Neurol 2008, 3, 229–240.
[64]
Philip, M.; Benatar, M.; Fisher, M.; Savitz, S.I. Methodological quality of animal studies of neuroprotective agents currently in phase II/III acute ischemic stroke trials. Stroke 2009, 40, 577–581.
[65]
Savitz, S.I. Cosmic implications of NXY-059. Stroke 2009, 40, S115–S118.
[66]
Savitz, S.I. A critical appraisal of the NXY-059 neuroprotection studies for acute stroke: A need for more rigorous testing of neuroprotective agents in animal models of stroke. Exp. Neurol 2007, 205, 20–25.
[67]
Sachs, L. The molecular control of hematopoiesis: From clonal development in culture to therapy in the clinic. Int. J. Cell Cloning 1992, 10, 196–204.
[68]
Sirén, A.L.; Knerlich, F.; Poser, W.; Gleiter, C.H.; Brück, W.; Ehrenreich, H. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol 2001, 101, 271–276.
[69]
Schneider, A.; Krüger, C.; Steigleder, T.; Weber, D.; Pitzer, C.; Laage, R.; Aronowski, J.; Maurer, M.H.; Gassler, N.; Mier, W.; et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J. Clin. Invest 2005, 115, 2083–2098.
[70]
Ruscher, K.; Freyer, D.; Karsch, M.; Isaev, N.; Megow, D.; Sawitzki, B.; Priller, J.; Dirnagl, U.; Meisel, A. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: Evidence from an in vitro model. J. Neurosci 2002, 22, 10291–10301.
[71]
Solaroglu, I.; Cahill, J.; Tsubokawa, T.; Beskonakli, E.; Zhang, J.H. Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurol. Res 2009, 31, 167–172.
[72]
Villa, P.; Bigini, P.; Mennini, T.; Agnello, D.; Laragione, T.; Cagnotto, A.; Viviani, B.; Marinovich, M.; Cerami, A.; Coleman, T.R.; et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J. Exp. Med 2003, 198, 971–975.
[73]
Wang, L.; Zhang, Z.; Wang, Y.; Zhang, R.; Chopp, M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004, 35, 1732–1737.
[74]
Lee, S.-T.; Chu, K.; Jung, K.-H.; Ko, S.-Y.; Kim, E.-H.; Sinn, D.I.; Lee, Y.S.; Lo, E.H.; Kim, M.; Roh, J.K. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res 2005, 1058, 120–128.
[75]
Minnerup, J.; Heidrich, J.; Wellmann, J.; Rogalewski, A.; Schneider, A.; Sch?bitz, W.-R. Meta-analysis of the efficacy of granulocyte-colony stimulating factor in animal models of focal cerebral ischemia. Stroke 2008, 39, 1855–1861.
[76]
England, T.J.; Gibson, C.L.; Bath, P.M.W. Granulocyte-colony stimulating factor in experimental stroke and its effects on infarct size and functional outcome: A systematic review. Brain Res. Rev 2009, 62, 71–82.
[77]
Jerndal, M.; Forsberg, K.; Sena, E.S.; Macleod, M.R.; O’Collins, V.E.; Linden, T.; Nilsson, M.; Howells, D.W. A systematic review and meta-analysis of erythropoietin in experimental stroke. J. Cereb. Blood Flow Metab 2010, 30, 961–968.
[78]
Minnerup, J.; Heidrich, J.; Rogalewski, A.; Sch?bitz, W.-R.; Wellmann, J. The efficacy of erythropoietin and its analogues in animal stroke models: A meta-analysis. Stroke 2009, 40, 3113–3120.
[79]
Ehrenreich, H.; Hasselblatt, M.; Dembowski, C.; Cepek, L.; Lewczuk, P.; Stiefel, M.; Rustenbeck, H.-H.; Breiter, N.; Jacob, S.; Knerlich, F.; et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol. Med 2002, 8, 495–505.
[80]
Ehrenreich, H.; Weissenborn, K.; Prange, H.; Schneider, D.; Weimar, C.; Wartenberg, K.; Schellinger, P.D.; Bohn, M.; Becker, H.; Wegrzyn, M.; et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 2009, 40, e647–e656.
[81]
Minnerup, J.; Wersching, H.; Sch?bitz, W.-R. EPO for stroke therapy-Is there a future for further clinical development? Exp. Transl. Stroke Med 2010, 2, 10.
[82]
Sch?bitz, W.R.; Laage, R.; Vogt, G.; Koch, W.; Kollmar, R.; Schwab, S.; Schneider, D.; Hamann, G.F.; Rosenkranz, M.; Veltkamp, R.; et al. AXIS: A trial of intravenous granulocyte colony-stimulating factor in acute ischemic stroke. Stroke 2010, 41, 2545–2551.
[83]
Ringelstein, E.B. AXIS-2 Study: AX200 for the Treatment of Acute Ischemic Stroke home page; Dallas, TX, USA, 2012. 2012. Bd. Available online: http://my.americanheart.org/idc/groups/ahamah-public/@wcm/@sop/@scon/documents/downloadable/ucm_435818.pdf , accessed on 17 August 2012.
[84]
Cheng, Y.D.; Al-Khoury, L.; Zivin, J.A. Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx 2004, 1, 36–45.
[85]
Tymianski, M. Can molecular and cellular neuroprotection be translated into therapies for patients? Yes, but not the way we tried it before. Stroke 2010, 41, S87–S90.
[86]
Lyden, P.; Wahlgren, N.G. Mechanisms of action of neuroprotectants in stroke. J. Stroke Cerebrovasc. Dis 2000, 9, 9–14.
Dirnagl, U.; Fisher, M. REPRINT: International, multicenter randomized preclinical trials in translational stroke research: It is time to act. Stroke 2012, 43, 1453–1454.
[89]
Sena, E.S.; van der Worp, H.B.; Bath, P.M.W.; Howells, D.W.; Macleod, M.R. Publication bias in reports of animal stroke studies leads to major overstatement of efficacy. PLoS Biol 2010, 8, e1000344.
[90]
Minnerup, J.; Seeger, F.H.; Kuhnert, K.; Diederich, K.; Schilling, M.; Dimmeler, S.; Sch?bitz, W.-R. Intracarotid administration of human bone marrow mononuclear cells in rat photothrombotic ischemia. Exp. Transl. Stroke Med 2010, 2, 3.
[91]
Brede, M.; Braeuninger, S.; Langhauser, F.; Hein, L.; Roewer, N.; Stoll, G.; Kleinschnitz, C. α(2)-adrenoceptors do not mediate neuroprotection in acute ischemic stroke in mice. J. Cereb. Blood Flow Metab 2011, 31, e1–e7.
[92]
Hermann, D.M.; Chopp, M. Promoting brain remodelling and plasticity for stroke recovery: Therapeutic promise and potential pitfalls of clinical translation. Lancet. Neurol 2012, 11, 369–380.
[93]
Lekieffre, D.; Benavides, J.; Scatton, B.; Nowicki, J.P. Neuroprotection afforded by a combination of eliprodil and a thrombolytic agent, rt-PA, in a rat thromboembolic stroke model. Brain Res 1997, 776, 88–95.
[94]
Asahi, M.; Asahi, K.; Wang, X.; Lo, E.H. Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab 2000, 20, 452–457.
[95]
Lapchak, P.A.; Araujo, D.M.; Song, D.; Wei, J.; Zivin, J.A. Neuroprotective effects of the spin trap agent disodium-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (generic NXY-059) in a rabbit small clot embolic stroke model: Combination studies with the thrombolytic tissue plasminogen activator. Stroke 2002, 33, 1411–1415.
[96]
Sumii, T.; Lo, E.H. Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke 2002, 33, 831–836.
Lyden, P.; Jacoby, M.; Schim, J.; Albers, G.; Mazzeo, P.; Ashwood, T.; Nordlund, A.; Odergren, T. The Clomethiazole Acute Stroke Study in tissue-type plasminogen activator-treated stroke (CLASS-T): Final results. Neurology 2001, 57, 1199–1205.
[99]
Flamm, E.S.; Demopoulos, H.B.; Seligman, M.L.; Poser, R.G.; Ransohoff, J. Free radicals in cerebral ischemia. Stroke 1978, 9, 445–447.
[100]
Crack, P.J.; Taylor, J.M. Reactive oxygen species and the modulation of stroke. Free Radic. Biol. Med 2005, 38, 1433–1444.
[101]
Dhalla, N.S.; Temsah, R.M.; Netticadan, T. Role of oxidative stress in cardiovascular diseases. J. Hypertens 2000, 18, 655–673.
[102]
Chan, P.H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab 2001, 21, 2–14.
[103]
Bjelakovic, G.; Nikolova, D.; Gluud, L.L.; Simonetti, R.G.; Gluud, C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systematic review and meta-analysis. J. Am. Med. Assoc 2007, 297, 842–857.
[104]
Radermacher, K.A.; Wingler, K.; Kleikers, P.; Altenh?fer, S.; Hermans, J., Jr; Kleinschnitz, C.; Hhw Schmidt, H. The 1027th target candidate in stroke: Will NADPH oxidase hold up? Exp. Transl. Stroke med. 2012, 4, 11.
[105]
Miller, A.A.; Drummond, G.R.; Sobey, C.G. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol. Ther 2006, 111, 928–948.
[106]
Sedwick, C. NOX4: A Guilty Party in Stroke Damage. PLoS Biol 2010, 8, e1000478.
[107]
Kleinschnitz, C.; Grund, H.; Wingler, K.; Armitage, M.E.; Jones, E.; Mittal, M.; Barit, D.; Schwarz, T.; Geis, C.; Kraft, P.; et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 2010, 8.
[108]
Arimura, K.; Ago, T.; Kuroda, J.; Ishitsuka, K.; Nishimura, A.; Sugimori, H.; Kamouch, M.; Sasak, T.; Kitazono, T. Role of NADPH oxidase 4 in brain endothelial cells after ischemic stroke. J. Neurosci 2012, 43, A2514.
[109]
Sancho, P.; Fabregat, I. The NADPH oxidase inhibitor VAS2870 impairs cell growth and enhances TGF-β-induced apoptosis of liver tumor cells. Biochem. Pharmacol 2011, 81, 917–924.
[110]
Aarts, M.; Liu, Y.; Liu, L.; Besshoh, S.; Arundine, M.; Gurd, J.W.; Wang, Y.-T.; Salter, M.W.; Tymianski, M. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 2002, 298, 846–850.
[111]
Sattler, R.; Xiong, Z.; Lu, W.Y.; Hafner, M.; MacDonald, J.F.; Tymianski, M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 1999, 284, 1845–1848.
[112]
Soriano, F.X.; Martel, M.-A.; Papadia, S.; Vaslin, A.; Baxter, P.; Rickman, C.; Forder, J.; Tymianski, M.; Duncan, R.; Aarts, M.; et al. Specific targeting of pro-death NMDA receptor signals with differing reliance on the NR2B PDZ ligand. J. Neurosci 2008, 28, 10696–10710.
[113]
Ikonomidou, C.; Turski, L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet. Neurol 2002, 1, 383–386.
[114]
Zhou, L.; Li, F.; Xu, H.-B.; Luo, C.-X.; Wu, H.-Y.; Zhu, M.-M.; Lu, W.; Ji, X.; Zhou, Q.-G.; Zhu, D.-Y. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat. Med 2010, 16, 1439–1443.
[115]
Jones, N. Stroke: Disruption of the nNOS–PSD-95 complex is neuroprotective in models of cerebral ischemia. Nat. Rev. Neurol 2011, 7, 61.
[116]
Cook, D.J.; Teves, L.; Tymianski, M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 2012, 483, 213–217.
[117]
Dolgin, E. To serve and neuroprotect. Nat. Med 2012, 18, 1003–1006.
[118]
Pugh, C.W.; Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med 2003, 9, 677–684.
[119]
Harten, S.K.; Ashcroft, M.; Maxwell, P.H. Prolyl hydroxylase domain inhibitors: a route to HIF activation and neuroprotection. Antioxid. Redox Signal 2010, 12, 459–480.
[120]
Endres, M.; Laufs, U.; Liao, J.K.; Moskowitz, M.A. Targeting eNOS for stroke protection. Trends Neurosci 2004, 27, 283–289.
[121]
Hermann, D.M.; Zechariah, A. Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J. Cereb. Blood Flow Metab 2009, 29, 1620–1643.
[122]
Siddiq, A.; Ayoub, I.A.; Chavez, J.C.; Aminova, L.; Shah, S.; LaManna, J.C.; Patton, S.M.; Connor, J.R.; Cherny, R.A.; Volitakis, I.; et al. Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J. Biol. Chem 2005, 280, 41732–41743.
[123]
Baranova, O.; Miranda, L.F.; Pichiule, P.; Dragatsis, I.; Johnson, R.S.; Chavez, J.C. Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J. Neurosci 2007, 27, 6320–6332.
[124]
Nagel, S.; Papadakis, M.; Chen, R.; Hoyte, L.C.; Brooks, K.J.; Gallichan, D.; Sibson, N.R.; Pugh, C.; Buchan, A.M. Neuroprotection by dimethyloxalylglycine following permanent and transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab 2011, 31, 132–143.
[125]
Chen, R.; Nagel, S.; Papadakis, M.; Bishop, T.; Pollard, P.; Ratcliffe, P.; Pugh, C.; Buchan, A. Roles of Individual Prolyl-4-Hydroxylase Isoforms (PHD1-3) in the First 24 Hours Following Transient Focal Cerebral Ischaemia: Insights from Genetically Modified Mice. J. physiol 2012, 590, 4079–4091.
[126]
Loenarz, C.; Schofield, C.J. Expanding chemical biology of 2-oxoglutarate oxygenases. Nat. Chem. Biol 2008, 4, 152–156.
[127]
Rothwell, N. Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav. Immun 2003, 17, 152–157.
[128]
Stroemer, R.P.; Rothwell, N.J. Exacerbation of ischemic brain damage by localized striatal injection of interleukin-1beta in the rat. J. Cereb. Blood Flow Metab 1998, 18, 833–839.
[129]
Arend, W.P. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev 2002, 13, 323–340.
[130]
Mulcahy, N.J.; Ross, J.; Rothwell, N.J.; Loddick, S.A. Delayed administration of interleukin-1 receptor antagonist protects against transient cerebral ischaemia in the rat. Br. J. Pharmacol 2003, 140, 471–476.
[131]
Banwell, V.; Sena, E.S.; Macleod, M.R. Systematic review and stratified meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke. J. Stroke Cerebrovasc. Dis 2009, 18, 269–276.
[132]
Pradillo, J.M.; Denes, A.; Greenhalgh, A.D.; Boutin, H.; Drake, C.; McColl, B.W.; Barton, E.; Proctor, S.D.; Russell, J.C.; Rothwell, N.J.; et al. Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats. J. Cereb. Blood Flow Metab 2012, 32, 1810–1819.
[133]
Greenhalgh, A.D.; Galea, J.; Dénes, A.; Tyrrell, P.J.; Rothwell, N.J. Rapid brain penetration of interleukin-1 receptor antagonist in rat cerebral ischaemia: Pharmacokinetics, distribution, protection. Br. J. Pharmacol 2010, 160, 153–159.
[134]
Clark, S.R.; McMahon, C.J.; Gueorguieva, I.; Rowland, M.; Scarth, S.; Georgiou, R.; Tyrrell, P.J.; Hopkins, S.J.; Rothwell, N.J. Interleukin-1 receptor antagonist penetrates human brain at experimentally therapeutic concentrations. J. Cereb. Blood Flow Metab 2008, 28, 387–394.
[135]
Emsley, H.C.A.; Smith, C.J.; Georgiou, R.F.; Vail, A.; Hopkins, S.J.; Rothwell, N.J.; Tyrrell, P.J. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatr 2005, 76, 1366–1372.