全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Structure Lacuna

DOI: 10.3390/ijms13079081

Keywords: golden ratio, molecular symmetry, spin function

Full-Text   Cite this paper   Add to My Lib

Abstract:

Molecular symmetry is intimately connected with the classical concept ofthree-dimensional molecular structure. In a non-classical theory of wave-like interactionin four-dimensional space-time, both of these concepts and traditional quantum mechanicslose their operational meaning, unless suitably modified. A required reformulation shouldemphasize the importance of four-dimensional effects like spin and the symmetry effects ofspace-time curvature that could lead to a fundamentally different understanding of molecularsymmetry and structure in terms of elementary number theory. Isolated single moleculeshave no characteristic shape and macro-biomolecules only develop robust three-dimensionalstructure in hydrophobic response to aqueous cellular media.

References

[1]  Gavroglu, K.; Sim?es, A. Neither Physics nor Chemistry; MIT Press: Cambridge, MA, USA, 2012.
[2]  Amann, A. Can quantum mechanics account for chemical structures? In Fundamental Principles of Molecular Modeling; Plenum: New York, NY, USA, 1996.
[3]  Comba, P.; Kerscher, M. Structure correlation in bispidine coordination complexes. Cryst. Eng 2003, 6, 197–211.
[4]  Levine, I.N. Quantum Chemistry, 4th ed ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1991.
[5]  Schr?dinger, E. Collected Papers on Wave Mechanics, 2nd ed; Shearer, J.F., Deans, W.M., Eds.; Chelsea: New York, NY, USA, 1978.
[6]  Weingard, R. Making Everything out of Nothing. In The Philosophy of Vacuum; Clarendon Press: Oxford, UK, 1991.
[7]  Morse, P.M.; Feshbach, H. Methods of Theoretical Physics; McGraw-Hill: New York, NY, USA, 1956.
[8]  Boeyens, J.C.A. Chemistry in four dimensions. Struct. Bond 2012. in press.
[9]  Boeyens, J.C.A.; Levendis, D.C. Number Theory and the Periodicity of Matter; Springer: Berlin/Heidelberg, Germany, 2008.
[10]  Boeyens, J.C.A. A molecular-structure hypothesis. Int. J. Mol. Sci 2010, 11, 4267–4284.
[11]  Boeyens, J.C.A. Calculation of atomic structure. Struct. Bond 2012. in press.
[12]  Condon, E.U.; Odaba?i, H. Atomic Structure; University Press: Cambridge, UK, 1980.
[13]  Mann, J.B. Atomic Structure Calculations II; Los Alamos Scientific Report: LA, 1968; Volume 3691.
[14]  Hirshfelder, J.O.; Curtis, C.F.; Bird, R.B. Molecular Theory of Gases and Liquids; Wiley: New York, NY, USA, 1954.
[15]  Boeyens, J.C.A. Ionization radii of compressed atoms. J. Chem. Soc. Faraday Trans 1994, 90, 3377–3381.
[16]  Boeyens, J.C.A. The periodic electronegativity table. Z. Naturforsch 2008, 63b, 199–209.
[17]  Boeyens, J.C.A. Covalent interaction. Struct. Bond 2012. in press.
[18]  Putz, M.V. Systematic formulation of electronegativity and hardness and their atomic scales within density functional softness theory. Int. J. Quantum Chem 2006, 106, 361–389.
[19]  Putz, M.V. Semiclassical electronegativity and chemical hardness. J. Theor. Comput. Chem 2007, 6, 33–47.
[20]  Putz, M.V. Chemical action and chemical bonding. J. Mol. Struct. (Theochem) 2009, 900, 64–70.
[21]  Putz, M.V. Electronegativity: Quantum observable. Int. J. Quantum Chem 2009, 109, 733–738.
[22]  Putz, M.V. The bondons: The quantum particles of the chemical bond. Int. J. Mol. Sci 2010, 11, 4227–4256.
[23]  Putz, M.V. IEEE Communications Society: New York, NY, USA, 2012.
[24]  Plato. Timaeus and Critias; Wilder Publications: Radford, VA, USA, 2010.
[25]  Schwaller de Lubicz, R.A. Le Temple de l’Homme. Critical summary in English; Quest Books: Wheaton, IL, USA, 1979.
[26]  Boeyens, J.C.A. Chemical Cosmology; Springer: Berlin/Heidelberg, Germany, 2010.
[27]  Maddox, J. The temptations of numerology. Nature 1983, 304, 11.
[28]  Lemesurier, P. The Great Pyramid; Element Books: Shaftesbury, Dorset, UK, 1987.
[29]  Stevens, P. Patterns in Nature; Little, Brown and Co: Boston, MA, USA, 1976.
[30]  Goldstone, J. Field Theories with “Superconducting” Solutions. Il Nuovo Cimento 1961, 19, 154–164.
[31]  Cotton, F.A. Chemical Applications of Group Theory, 2nd ed ed.; Wiley-Interscience: New York, NY, USA, 1971.
[32]  Kaku, M.; Thompson, J. Beyond Einstein; University Press: Oxford, UK, 1999.
[33]  Grushow, A. Is it time to retire the hybrid atomic orbital? J. Chem. Ed 2011, 88, 860–862.
[34]  Pritchard, H.O. We need to update the teaching of valence theory. J. Chem. Ed 2012, 89, 301–303.
[35]  Goldstein, S. Quantum philosophy: The flight from reason in science. Ann. N. Y. Acad. Sci 1996, 775, 119–125.
[36]  Claverie, P. Classical molecular structure and the puzzle of “classical limit” in quantum theory. Stud. Phys. Theor. Chem 1983, 23, 13–22.
[37]  Wheeler, J.A. From Relativity to Mutability. In The Physicist’s Conception of Nature; Reidel: Boston, MA, USA, 1973.
[38]  Haken, H.; Wolf, H.C. The Physics of Atoms and Quanta, 4th ed ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 1994.
[39]  Rehder, D. Chemistry in Space; Wiley-VCH: Weinheim, Germany, 2010.
[40]  Creighton, T.E. The problem of how and why proteins adopt folded conformations. J. Phys. Chem 1985, 89, 2452–2459.
[41]  Creighton, T.E. Pathways and mechanisms of protein folding. Adv. Biophys 1984, 18, 1–20.
[42]  Chaplin, M. Do we underestimate the importance of water in cell biology? Nat. Rev. Mol. Cell Biol 2006, 7, 861–866.
[43]  Francis, G.K. A Topological Picturebook; Springer-Verlag: New York, NY, USA, 1987.
[44]  Stillwell, J. Numbers and Geometry; Springer-Verlag: New York, NY, USA, 1998.
[45]  Stillwell, J. Geometry of Surfaces; Springer-Verlag: New York, NY, USA, 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133