Decidual Macrophages Are Significantly Increased in Spontaneous Miscarriages and Over-Express FasL: A Potential Role for Macrophages in Trophoblast Apoptosis
Decidual macrophages (DM) are the second most abundant population in the fetal-maternal interface. Their role has been so far identified as being local immuno-modulators favoring the maternal tolerance to the fetus. Herein we investigated tissue samples from 11 cases of spontaneous miscarriages and from 9 cases of elective terminations of pregnancy. Using immunohistochemistry and dual immunofluorescence we have demonstrated that in spontaneous miscarriages the DM are significantly increased. Additionally, we noted a significant up-regulation of macrophage FasL expression. Our results further support a dual role for DM during pregnancy and miscarriages. We hypothesize that the baseline DM population in normal pregnancy is in line with an M2 phenotype supporting the ongoing gestation. In contrast, during spontaneous miscarriages, the increased FasL-expressing population could be a part of an M1 phenotype participating in Fas/FasL-related apoptosis. Our results highlight a new aspect of macrophage biology in pregnancy physiology and pathophysiology. Further studies with larger samples are needed to verify the current results and evaluate their clinical impact.
References
[1]
Macklon, N.S.; Geraedts, J.P.; Fauser, B.C. Conception to ongoing pregnancy: The “black box” of early pregnancy loss. Hum. Reprod. Update 2002, 8, 333–343.
[2]
Barnea, E. Epidemiology, Etiology of Early Pregnancy Disorders. In The First Twelve Weeks of Gestation; Barnea, E., Hustin, J., Jaunieaux, E., Eds.; Springer-Verlag: Berlin, Germany, 1992; pp. 263–269.
[3]
Warning, J.C.; McCracken, S.A.; Morris, J.M. A balancing act: Mechanisms by which the fetus avoids rejection by the maternal immune system. Reproduction 2011, 141, 715–724.
[4]
Piccinni, M.P. T cell tolerance towards the fetal allograft. J. Reprod. Immunol 2010, 85, 71–75.
[5]
Yagel, S. The developmental role of natural killer cells at the fetal-maternal interface. Am. J. Obstet. Gynecol 2009, 201, 344–350.
[6]
Houser, B.L. Decidual macrophages and their roles at the maternal-fetal interface. Yale J. Biol. Med 2012, 85, 105–118.
[7]
Nagamatsu, T.; Schust, D.J. The contribution of macrophages to normal and pathological pregnancies. Am. J. Reprod. Immunol 2010, 63, 460–471.
[8]
Nagata, S. Fas and Fas ligand: A death factor and its receptor. Adv. Immunol 1994, 57, 129–144.
Minas, V.; Jeschke, U.; Kalantaridou, S.N.; Richter, D.U.; Reimer, T.; Mylonas, I.; Friese, K.; Makrigiannakis, A. Abortion is associated with increased expression of FasL in decidual leukocytes and apoptosis of extravillous trophoblasts: A role for CRH and urocortin. Mol. Hum. Reprod 2007, 13, 663–673.
[11]
Wongweragiat, S.; Searle, R.F.; Bulmer, J.N. Expression of Fas/Fas ligand by decidual leukocytes in hydatidiform mole. Biol. Reprod 2001, 64, 784–789.
[12]
Mizuno, M.; Aoki, K.; Kimbara, T. Functions of macrophages in human decidual tissue in early pregnancy. Am. J. Reprod. Immunol 1994, 31, 180–188.
[13]
Parhar, R.S.; Yagel, S.; Lala, P.K. PGE2-mediated immunosuppression by first trimester human decidual cells blocks activation of maternal leukocytes in the decidua with potential anti-trophoblast activity. Cell Immunol 1989, 120, 61–74.
[14]
Heikkinen, J.; Mottonen, M.; Komi, J.; Alanen, A.; Lassila, O. Phenotypic characterization of human decidual macrophages. Clin. Exp. Immunol 2003, 131, 498–505.
[15]
Miwa, N.; Hayakawa, S.; Miyazaki, S.; Myojo, S.; Sasaki, Y.; Sakai, M.; Takikawa, O.; Saito, S. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion. Mol. Hum. Reprod 2005, 11, 865–870.
[16]
Munn, D.H.; Zhou, M.; Attwood, J.T.; Bondarev, I.; Conway, S.J.; Marshall, B.; Brown, C.; Mellor, A.L. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998, 281, 1191–1193.
[17]
Renaud, S.J.; Graham, C.H. The role of macrophages in utero-placental interactions during normal and pathological pregnancy. Immunol. Invest 2008, 37, 535–564.
[18]
Saito, S.; Nakashima, A.; Shima, T.; Ito, M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol 2010, 63, 601–610.
[19]
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol 2003, 3, 23–35.
[20]
Mills, C.D.; Kincaid, K.; Alt, J.M.; Heilman, M.J.; Hill, A.M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol 2000, 164, 6166–6173.
[21]
Devaraj, S.; Jialal, I. C-reactive protein polarizes human macrophages to an M1 phenotype and inhibits transformation to the M2 phenotype. Arterioscler. Thromb. Vasc. Biol 2011, 31, 1397–1402.
[22]
Chieppa, M.; Bianchi, G.; Doni, A.; Del Prete, A.; Sironi, M.; Laskarin, G.; Monti, P.; Piemonti, L.; Biondi, A.; Mantovani, A.; et al. Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J. Immunol 2003, 171, 4552–4560.
[23]
Gustafsson, C.; Mjosberg, J.; Matussek, A.; Geffers, R.; Matthiesen, L.; Berg, G.; Sharma, S.; Buer, J.; Ernerudh, J. Gene expression profiling of human decidual macrophages: Evidence for immunosuppressive phenotype. PLoS One 2008, 3, e2078.
[24]
Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest 2012, 122, 787–795.
[25]
Vassiliadou, N.; Bulmer, J.N. Immunohistochemical evidence for increased numbers of ‘classic’ CD57+ natural killer cells in the endometrium of women suffering spontaneous early pregnancy loss. Hum. Reprod 1996, 11, 1569–1574.
[26]
Quack, K.C.; Vassiliadou, N.; Pudney, J.; Anderson, D.J.; Hill, J.A. Leukocyte activation in the decidua of chromosomally normal and abnormal fetuses from women with recurrent abortion. Hum. Reprod 2001, 16, 949–955.
[27]
Dockrell, D.H.; Badley, A.D.; Villacian, J.S.; Heppelmann, C.J.; Algeciras, A.; Ziesmer, S.; Yagita, H.; Lynch, D.H.; Roche, P.C.; Leibson, P.J.; et al. The expression of Fas Ligand by macrophages and its upregulation by human immunodeficiency virus infection. J. Clin. Invest 1998, 101, 2394–2405.
[28]
Borges, V.M.; Falcao, H.; Leite-Junior, J.H.; Alvim, L.; Teixeira, G.P.; Russo, M.; Nobrega, A.F.; Lopes, M.F.; Rocco, P.M.; Davidson, W.F.; et al. Fas ligand triggers pulmonary silicosis. J. Exp. Med 2001, 194, 155–164.
Angioni, S.; Petraglia, F.; Gallinelli, A.; Cossarizza, A.; Franceschi, C.; Muscettola, M.; Genazzani, A.D.; Surico, N.; Genazzani, A.R. Corticotropin-releasing hormone modulates cytokines release in cultured human peripheral blood mononuclear cells. Life Sci 1993, 53, 1735–1742.
[31]
Pestka, A.; Toth, B.; Kuhn, C.; Hofmann, S.; Wiest, I.; Wypior, G.; Friese, K.; Jeschke, U. Retinoid X receptor alpha and retinoids are key regulators in apoptosis of trophoblasts of patients with recurrent miscarriages. J. Mol. Endocrinol 2011, 47, 145–156.