Powdery mildew (PM), caused by fungus Erysiphe necator, is one of the most devastating diseases of grapevine. To better understand grapevine-PM interaction and provide candidate resources for grapevine breeding, a suppression subtractive hybridization (SSH) cDNA library was constructed from E. necator-infected leaves of a resistant Chinese wild Vitis quinquangularis clone “Shang-24”. A total of 492 high quality expressed sequence tags (ESTs) were obtained and assembled into 266 unigenes. Gene ontology (GO) analysis indicated that 188 unigenes could be assigned with at least one GO term in the biological process category, and 176 in the molecular function category. Sequence analysis showed that a large number of these genes were homologous to those involved in defense responses. Genes involved in metabolism, photosynthesis, transport and signal transduction were also enriched in the library. Expression analysis of 13 selected genes by qRT-PCR revealed that most were induced more quickly and intensely in the resistant material “Shang-24” than in the sensitive V. pseudoreticulata clone “Hunan-1” by E. necator infection. The ESTs reported here provide new clues to understand the disease-resistance mechanism in Chinese wild grapevine species and may enable us to investigate E. necator-responsive genes involved in PM resistance in grapevine germplasm.
Donald, T.; Pellerone, F.; Adam-Blondon, A.F.; Bouquet, A.; Thomas, M.; Dry, I. Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor. Appl. Genet 2002, 104, 610–618.
[3]
Barker, C.; Donald, T.; Pauquet, J.; Ratnaparkhe, M.; Bouquet, A.; Adam-Blondon, A.F.; Thomas, M.; Dry, I. Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor. Appl. Genet 2005, 111, 370–377.
[4]
Fung, R.W.M.; Gonzalo, M.; Fekete, C.; Kovacs, L.G.; He, Y.; Marsh, E.; McIntyre, L.M.; Schachtman, D.P.; Qiu, W. Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 2008, 146, 236–249.
[5]
Winterhagen, P.; Howard, S.F.; Qiu, W.; Kovács, L.G. Transcriptional up-regulation of grapevine MLO genes in response to powdery mildew infection. Am. J. Enol. Vitic 2008, 59, 159–168.
[6]
He, P.C.; Wang, Y.J.; Wang, G.Y. Study of the resistance disease in Chinese native wild Vitis L. species. Sci. Agric. Sin 1991, 24, 50–56.
[7]
Wang, Y.; Liu, Y.; He, P.; Chen, J.; Lamikanra, O.; Lu, J. Evaluation of foliar resistance to uncinula necator in Chinese wild vitis species. Vitis 1995, 34, 159–164.
[8]
Legay, G.; Marouf, E.; Berger, D.; Neuhaus, J.M.; Mauch-Mani, B.; Slaughter, A. Identification of genes expressed during the compatible interaction of grapevine with Plasmopara viticola through suppression subtractive hybridization (SSH). Eur. J. Plant Pathol 2011, 129, 281–301.
[9]
Norelli, J.L.; Farrell, R.E.; Bassett, C.L.; Baldo, A.M.; Lalli, D.A.; Aldwinckle, H.S.; Wisniewski, M.E. Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genet. Genomes 2009, 5, 27–40.
[10]
Qi, X.; Xu, Q.; Shen, L.; Alfandi, M.; Luo, J.; Chen, X. Identification of differentially expressed genes between powdery mildew resistant near-isogenic line and susceptible line of cucumber by suppression subtractive hybridization. Sci. Hortic 2010, 126, 27–32.
Vanacker, H.; Carver, T.L.W.; Foyer, C.H. Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 2000, 123, 1289–1300.
[13]
Polesani, M.; Bortesi, L.; Ferrarini, A.; Zamboni, A.; Fasoli, M.; Zadra, C.; Lovato, A.; Pezzotti, M.; Delledonne, M.; Polverari, A. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genomics 2010, 11, 117.
[14]
Jiang, H.; Song, W.; Li, A.; Yang, X.; Sun, D. Identification of genes differentially expressed in cauliflower associated with resistance to Xanthomonas campestris pv. campestris. Mol. Biol. Rep 2011, 38, 621–629.
[15]
Van Loon, L.; Rep, M.; Pieterse, C. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol 2006, 44, 135–162.
[16]
Sels, J.; Mathys, J.; de Coninck, B.; Cammue, B.; de Bolle, M.F.C. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol. Biochem 2008, 46, 941–950.
[17]
De A Gerhardt, L.B.; Sachetto-Martins, G.; Contarini, M.G.; Sandroni, M.; de P Ferreira, R.; de Lima, V.M.; Cordeiro, M.C.; de Oliveira, D.E.; Margis-Pinheiro, M. Arabidopsis thaliana class IV chitinase is early induced during the interaction with Xanthomonas campestris. FEBS Lett 1997, 419, 69–75.
[18]
Monteiro, S.; Barakat, M.; Pi?arra-Pereira, M.A.; Teixeira, A.R.; Ferreira, R.B. Osmotin and thaumatin from grape: A putative general defense mechanism against pathogenic fungi. Phytopathology 2003, 93, 1505–1512.
[19]
Punja, Z.K. Transgenic carrots expressing a thaumatin-like protein display enhanced resistance to several fungal pathogens. Can. J. Plant Pathol 2005, 27, 291–296.
[20]
Ho, V.S.M.; Wong, J.H.; Ng, T. A thaumatin-like antifungal protein from the emperor banana. Peptides 2007, 28, 760–766.
[21]
Kim, B.G.; Fukumoto, T.; Tatano, S.; Gomi, K.; Ohtani, K.; Tada, Y.; Akimitsu, K. Molecular cloning and characterization of a thaumatin-like protein-encoding cDNA from rough lemon. Physiol. Mol. Plant Pathol 2009, 74, 3–10.
[22]
Kortekamp, A. Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiol. Biochem 2006, 44, 58–67.
[23]
McGee, J.D.; Hamer, J.E.; Hodges, T.K. Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Mol. Plant Microbe Interact 2001, 14, 877–886.
[24]
Vieira, F.A.; Carvalho, A.O.; Vitória, ?.P.; Retamal, C.A.; Gomes, V.M. Differential expression of defence-related proteins in Vigna unguiculata (L. Walp.) seedlings after infection with Fusarium oxysporum. Crop Prot. 2010, 29, 440–447.
[25]
Yazaki, K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 2006, 580, 1183–1191.
[26]
Kobae, Y.; Sekino, T.; Yoshioka, H.; Nakagawa, T.; Martinoia, E.; Maeshima, M. Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 2006, 47, 309–318.
[27]
Devoto, A.; Muskett, P.R.; Shirasu, K. Role of ubiquitination in the regulation of plant defence against pathogens. Curr. Opin. Plant Biol 2003, 6, 307–311.
[28]
Chung, H.S. Role of JAZ Proteins in the Regulation of Jasmonate Signaling in Arabidopsis; Michigan State University: East Lansing, MI, USA, 2010.
[29]
Chung, H.S.; Koo, A.J.K.; Gao, X.; Jayanty, S.; Thines, B.; Jones, A.D.; Howe, G.A. Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 2008, 146, 952–964.
[30]
Li, J.W.; Liu, J.; Zhang, H.; Xie, C.H. Identification and transcriptional profiling of differentially expressed genes associated with resistance to Pseudoperonospora cubensis in cucumber. Plant Cell Rep 2011, 30, 345–357.
[31]
Scharte, J.; Sch?n, H.; Weis, E. Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ 2005, 28, 1421–1435.
[32]
Akagi, A.; Dandekar, A.M.; Stotz, H.U. Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis. Phytopathology 2011, 101, 1311–1321.
[33]
Moschou, P.N.; Sarris, P.F.; Skandalis, N.; Andriopoulou, A.H.; Paschalidis, K.A.; Panopoulos, N.J.; Roubelakis-Angelakis, K.A. Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes. Plant Physiol 2009, 149, 1970–1981.
[34]
Jeandet, P.; Douillet-Breuil, A.C.; Bessis, R.; Debord, S.; Sbaghi, M.; Adrian, M. Phytoalexins from the Vitaceae: Biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem 2002, 50, 2731–2741.
[35]
Cools, H.; Ishii, H. Pre-treatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine ammonia lyase gene (PAL1) for enhanced expression upon attack with a pathogenic fungus. Physiol. Mol. Plant Pathol 2002, 61, 273–280.
[36]
Geetha, N.; Amruthesh, K.; Sharathchandra, R.; Shetty, H. Resistance to downy mildew in pearl millet is associated with increased phenylalanine ammonia lyase activity. Funct. Plant Biol 2005, 32, 267–275.
[37]
Zhang, J.; Wang, Y.; Wang, X.; Yang, K.; Yang, J. An improved method for rapidly extracting total RNA from Vitis. J. Fruit Sci 2003, 20, 178–181.
[38]
Ewing, B.; Hillier, L.D.; Wendl, M.C.; Green, P. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 1998, 8, 175–185.
[39]
Chou, H.H.; Holmes, M.H. DNA sequence quality trimming and vector removal. Bioinformatics 2001, 17, 1093–1104.
[40]
Zheng, Y.; Zhao, L.; Gao, J.; Fei, Z. iAssembler: A package for de novo assembly of Roche-454/Sanger transcriptome sequences. BMC Bioinform 2011, 12, 453.
[41]
Apweiler, R.; Martin, M.; O’Donovan, C.; Magrane, M.; Alam-Faruque, Y.; Antunes, R.; Barrell, D.; Bely, B.; Bingley, M.; Binns, D. The universal protein resource (UniProt) in 2010. Nucleic Acids Res 2010, 38, 142–148.
[42]
Finn, R.D.; Mistry, J.; Tate, J.; Coggill, P.; Heger, A.; Pollington, J.E.; Gavin, O.L.; Gunasekaran, P.; Ceric, G.; Forslund, K. The Pfam protein families database. Nucleic Acids Res 2010, 38, 211–222.