全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Personalized Targeted Therapy for Lung Cancer

DOI: 10.3390/ijms130911471

Keywords: ALK, biomarker, EGFR, lung cancer, next-generation sequencing

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lung cancer has long been recognized as an extremely heterogeneous disease, since its development is unique in every patient in terms of clinical characterizations, prognosis, response and tolerance to treatment. Personalized medicine refers to the use of markers to predict which patient will most likely benefit from a treatment. In lung cancer, the well-developed epidermal growth factor receptor (EGFR) and the newly emerging EML4-anaplastic lymphoma kinase (ALK) are important therapeutic targets. This review covers the basic mechanism of EGFR and EML4-ALK activation, the predictive biomarkers, the mechanism of resistance, and the current targeted tyrosine kinase inhibitors. The efficacy of EGFR and ALK targeted therapies will be discussed in this review by summarizing the prospective clinical trials, which were performed in biomarker-based selected patients. In addition, the revolutionary sequencing and systems strategies will also be included in this review since these technologies will provide a comprehensive understanding in the molecular characterization of cancer, allow better stratification of patients for the most appropriate targeted therapies, eventually resulting in a more promising personalized treatment. The relatively low incidence of EGFR and ALK in non-Asian patients and the lack of response in mutant patients limit the application of the therapies targeting EGFR or ALK. Nevertheless, it is foreseeable that the sequencing and systems strategies may offer a solution for those patients.

References

[1]  Herbst, R.S.; Heymach, J.V.; Lippman, S.M. Lung cancer. N. Engl. J. Med 2008, 359, 1367–1380.
[2]  American cancer society. Cancer facts & figures 2011, Available online: http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-029771.pdf , accessed on 24 June 2012.
[3]  Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics, 2011. CA. Cancer J. Clin 2011, 61, 69–90.
[4]  National Comprehensive Cancer Network. Available online: http://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf , accessed on 10 September 2012.
[5]  Sequist, L.V.; Lynch, T.J. EGFR tyrosine kinase inhibitors in lung cancer: An evolving story. Annu. Rev. Med 2008, 59, 429–442.
[6]  Cagle, P.T.; Chirieac, L.R. Advances in treatment of lung cancer with targeted therapy. Arch. Pathol. Lab. Med 2012, 136, 504–509.
[7]  Burgess, D.J. Cancer genetics: Initially complex, always heterogeneous. Nat. Rev. Cancer 2011, 11, 153.
[8]  Bunnell, C.A.; Shulman, L.N. Will we be able to care for cancer patients in the future? Oncology (Williston Park) 2010, 14, 1343–1348.
[9]  Hoelder, S.; Clarke, P.A.; Workman, P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol 2012, 6, 155–176.
[10]  Prince, A.; Aguirre-Ghizo, J.; Genden, E.; Posner, M.; Sikora, A. Head and neck squamous cell carcinoma: New translational therapies. Mt. Sinai. J. Med 2010, 77, 684–699.
[11]  Ballestrero, A.; Garuti, A.; Cirmena, G.; Rocco, I.; Palermo, C.; Nencioni, A.; Scabini, S.; Zoppoli, G.; Parodi, S.; Patrone, F. Patient-tailored treatments with anti-EGFR monoclonal antibodies in advanced colorectal cancer: KRAS and beyond. Curr. Cancer Drug Targets 2012, 12, 316–328.
[12]  Ko, A.H.; Tempero, M.A. Personalized medicine for pancreatic cancer: A step in the right direction. Gastroenterology 2009, 136, 43–45.
[13]  Olopade, O.I.; Grushko, T.A.; Nanda, R.; Huo, D. Advances in breast cancer: Pathways to personalized medicine. Clin. Cancer Res 2008, 14, 7988–7999.
[14]  Mitsudomi, T.; Yatabe, Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci 2007, 98, 1817–1824.
[15]  Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 2007, 7, 169–181.
[16]  Ciardiello, F.; Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med 2008, 358, 1160–1174.
[17]  Scaltriti, M.; Baselga, J. The epidermal growth factor receptor pathway: A model for targeted therapy. Clin. Cancer Res 2006, 12, 5268–5272.
[18]  Citri, A.; Yarden, Y. EGF-ERBB signalling: Towards the systems level. Nat. Rev. Mol. Cell Biol 2006, 7, 505–516.
[19]  Gazdar, A.F.; Minna, J.D. Deregulated EGFR signaling during lung cancer progression: Mutations, amplicons, and autocrine loops. Cancer Prev. Res. (Phila) 2008, 1, 156–160.
[20]  Sharma, S.V.; Settleman, J. Oncogenic shock: Turning an activated kinase against the tumor cell. Cell Cycle 2006, 5, 2878–2880.
[21]  Martine, E.N.; Hahn, M.S.; McKenna, G.W. Molecular Biology and Genetics of Lung Cancer. In Advances in Radiation Oncology in Lung Cancer; Jeremi?, B., Ed.; Springer-Verlag Berlin: Heidelberg, Germany, 2005; p. 6.
[22]  Belani, C.P.; Goss, G.; Blumenschein, G., Jr. Recent clinical developments and rationale for combining targeted agents in non-small cell lung cancer (NSCLC). Cancer Treat. Rev. 2012, 38, 173–184.
[23]  Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med 2004, 350, 2129–2139.
[24]  Paez, J.G.; J?nne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497–1500.
[25]  Pao, W.; Miller, V.; Zakowski, M.; Doherty, J.; Politi, K.; Sarkaria, I.; Singh, B.; Heelan, R.; Rusch, V.; Fulton, L.; et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA 2004, 101, 13306–13311.
[26]  Fukuoka, M.; Wu, Y.L.; Thongprasert, S.; Sunpaweravong, P.; Leong, S.S.; Sriuranpong, V.; Chao, T.Y.; Nakagawa, K.; Chu, D.T.; Saijo, N.; et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J. Clin. Oncol 2011, 29, 2866–2874.
[27]  Ulivi, P.; Calistri, D.; Zoli, W.; Amadori, D. Predictive molecular markers for EGFR-TKI in non-small cell lung cancer patients: New insights and critical aspects. J. Nucleic Acids Investig 2010, 1, 47–54.
[28]  Petrelli, F.; Borgonovo, K.; Cabiddu, M.; Barni, S. Efficacy of EGFR tyrosine kinase inhibitors in patients with EGFR-mutated non-small-cell lung cancer: A meta-analysis of 13 randomized trials. Clin. Lung Cancer 2012, 13, 107–114.
[29]  Mok, T.S. Personalized medicine in lung cancer: What we need to know. Nat. Rev. Clin. Oncol 2011, 8, 661–668.
[30]  Keedy, V.L.; Temin, S.; Somerfield, M.R.; Beasley, M.B.; Johnson, D.H.; McShane, L.M.; Milton, D.T.; Strawn, J.R.; Wakelee, H.A.; Giaccone, G. American Society of Clinical Oncology provisional clinical opinion: Epidermal growth factor receptor (EGFR) mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J. Clin. Oncol 2011, 29, 2121–2127.
[31]  Stella, G.M.; Luisetti, M.; Inghilleri, S.; Cemmi, F.; Scabini, R.; Zorzetto, M.; Pozzi, E. Targeting EGFR in non-small-cell lung cancer: Lessons, experiences, strategies. Respir. Med 2012, 106, 173–183.
[32]  Sequist, L.V.; Bell, D.W.; Lynch, T.J.; Haber, D.A. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J. Clin. Oncol 2007, 25, 587–595.
[33]  Cheng, L.; Alexander, R.E.; Maclennan, G.T.; Cummings, O.W.; Montironi, R.; Lopez-Beltran, A.; Cramer, H.M.; Davidson, D.D.; Zhang, S. Molecular pathology of lung cancer: Key to personalized medicine. Mod. Pathol 2012, 25, 347–369.
[34]  Shigematsu, H.; Lin, L.; Takahashi, T.; Nomura, M.; Suzuki, M.; Wistuba, I.I.; Fong, M.K.; Lee, H.; Toyooka, S.; Shimizu, N.; et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J. Natl. Cancer Inst 2005, 97, 339–346.
[35]  Riely, G.J.; Politi, K.A.; Miller, V.A.; Pao, W. Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin. Cancer Res 2006, 12, 7232–7241.
[36]  Couraud, S.; Zalcman, G.; Milleron, B.; Morin, F.; Souquet, P.J. Lung cancer in never smokers—A review. Eur. J. Cancer 2012, 48, 1299–1311.
[37]  Yasuda, H.; Kobayashi, S.; Costa, D.B. EGFR exon 20 insertion mutations in non-small-cell lung cancer: Preclinical data and clinical implications. Lancet Oncol 2012, 13, e23–e31.
[38]  Ladanyi, M.; Pao, W. Lung adenocarcinoma: Guiding EGFR-targeted therapy and beyond. Mod. Pathol 2008, 21, S16–S22.
[39]  Shigematsu, H.; Gazdar, A.F. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int. J. Cancer 2006, 118, 257–262.
[40]  Lee, Y.; Shim, H.S.; Park, M.S.; Kim, J.H.; Ha, S.J.; Kim, S.H.; Cho, B.C. High EGFR gene copy number and skin rash as predictive markers for EGFR tyrosine kinase inhibitors in patients with advanced squamous cell lung carcinoma. Clin. Cancer Res 2012, 18, 1760–1768.
[41]  Hirsch, F.R.; Varella-Garcia, M.; McCoy, J.; West, H.; Xavier, A.C.; Gumerlock, P.; Bunn, P.A., Jr; Franklin, W.A.; Crowley, J.; Gandara, D.R.; et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: A Southwest Oncology Group study. J. Clin. Oncol. 2005, 23, 6838–6845.
[42]  Cappuzzo, F.; Hirsch, F.R.; Rossi, E.; Bartolini, S.; Ceresoli, G.L.; Bemis, L.; Haney, J.; Witta, S.; Danenberg, K.; Domenichini, I.; et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl. Cancer Inst 2005, 97, 643–655.
[43]  Sholl, L.M.; Xiao, Y.; Joshi, V.; Yeap, B.Y.; Cioffredi, L.A.; Jackman, D.M.; Lee, C.; J?nne, P.A.; Lindeman, N.I. EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry. Am. J. Clin. Pathol 2010, 133, 922–934.
[44]  Lee, C.C.; Jia, Y.; Li, N.; Sun, X.; Ng, K.; Ambing, E.; Gao, M.Y.; Hua, S.; Chen, C.; Kim, S.; et al. Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain. Biochem. J 2010, 430, 425–437.
[45]  Morris, S.W.; Naeve, C.; Mathew, P.; James, P.L.; Kirstein, M.N.; Cui, X.; Witte, D.P. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 1997, 14, 2175–2188.
[46]  Scagliotti, G.; Stahel, R.A.; Rosell, R.; Thatcher, N.; Soria, J.C. ALK translocation and crizotinib in non-small cell lung cancer: An evolving paradigm in oncology drug development. Eur. J. Cancer 2012, 48, 961–973.
[47]  Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007, 448, 561–566.
[48]  Kwak, E.L.; Bang, Y.J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.H.; Dezube, B.J.; J?nne, P.A.; Costa, D.B.; et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med 2010, 363, 1693–1703.
[49]  Chen, J.; Liu, H.; Yang, T.; Wei, S.; Zhou, Q. Clinical significance of the EML4-ALK fusion gene and association with EGFR and KRAS gene mutation in 208 Chinese patients with non-small cell lung cancer. J. Clin. Oncol 2012, 30, e17514.
[50]  Sun, Y.; Ren, Y.; Fang, Z.; Li, C.; Fang, R.; Gao, B.; Han, X.; Tian, W.; Pao, W.; Chen, H.; et al. Lung adenocarcinoma from East Asian never-smokers is a disease largely defined by targetable oncogenic mutant kinases. J. Clin. Oncol 2010, 28, 4616–4620.
[51]  Janku, F.; Stewart, D.J.; Kurzrock, R. Targeted therapy in non-small-cell lung cancer—Is it becoming a reality? Nat. Rev. Clin. Oncol 2010, 7, 401–414.
[52]  Pao, W.; Girard, N. New driver mutations in non-small-cell lung cancer. Lancet Oncol 2011, 12, 175–180.
[53]  Linardou, H.; Dahabreh, I.J.; Kanaloupiti, D.; Siannis, F.; Bafaloukos, D.; Kosmidis, P.; Papadimitriou, C.A.; Murray, S. Assessment of somatic K-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: A systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 2008, 9, 962–972.
[54]  Pao, W.; Wang, T.Y.; Riely, G.J.; Miller, V.A.; Pan, Q.; Ladanyi, M.; Zakowski, M.F.; Heelan, R.T.; Kris, M.G.; Varmus, H.E. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2005, 2, e17.
[55]  Shepherd, F.A.; Tsao, M.S. Epidermal growth factor receptor biomarkers in non-small-cell lung cancer: A riddle, wrapped in a mystery, inside an enigma. J. Clin. Oncol 2010, 28, 903–905.
[56]  Ekman, S.; Wynes, M.W.; Hirsch, F.R. The mTOR pathway in lung cancer and implications for therapy and biomarker analysis. J. Thorac. Oncol 2012, 7, 947–953.
[57]  Marti, M.A.; Martinez, P.; Aura, C.; Cedres, S.; Sullivan, I.; Jimenez, J.; Prudkin, L.; Montero, A.M.; Murtra-Garrell, N.; Zamora, E.; et al. Amplification of fibroblast growth factor receptor type 1 gene (FGFR1) in samples from 101 NSCLC patients (pts) with squamous cell carcinoma (SCC) histology. J. Clin. Oncol 2012, 30. abstr7041.
[58]  Dy, K.G.; Shao, H.; Ho, B.; Yemma, M.; Adjei, A.; Golubovskaya, V.; Cance, V. Preclinical investigation of the antitumor efficacy in lung cancer of Y15, a novel focal adhesion kinase inhibitor. Mol. Cancer Ther 2011, 10, S1.
[59]  Hammerman, P.S.; Sos, M.L.; Ramos, A.H.; Xu, C.; Dutt, A.; Zhou, W.; Brace, L.E.; Woods, B.A.; Lin, W.; Zhang, J.; et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov 2011, 1, 78–89.
[60]  Pao, W.; Miller, V.A.; Politi, K.A.; Riely, G.J.; Somwar, R.; Zakowski, M.F.; Kris, M.G.; Varmus, H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005, 2, e73.
[61]  Ma, C.; Wei, S.; Song, Y. T790M and acquired resistance of EGFR TKI: A literature review of clinical reports. J. Thorac. Dis 2011, 3, 10–18.
[62]  Ogawa, T.; Liggett, T.E.; Melnikov, A.A.; Monittom, C.L.; Kusuke, D.; Shiga, K.; Kobayashi, T.; Horii, A.; Chatterjee, A.; Levenson, V.V.; et al. Methylation of death-associated protein kinase is associated with cetuximab and erlotinib resistance. Cell Cycle 2012, 11, 1656–1663.
[63]  Ghosh, G.; Lian, X.; Kron, S.J.; Palecek, S.P. Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors. BMC Cancer 2012, 12, 95.
[64]  Choi, Y.L.; Soda, M.; Yamashita, Y.; Ueno, T.; Takashima, J.; Nakajima, T.; Yatabe, Y.; Takeuchi, K.; Hamada, T.; Haruta, H.; et al. ALK Lung Cancer Study Group. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med 2010, 363, 1734–1739.
[65]  Sequist, L.V.; Waltman, B.A.; Dias-Santagata, D.; Digumarthy, S.; Turke, A.B.; Fidias, P.; Bergethon, K.; Shaw, A.T.; Gettinger, S.; Cosper, A.K.; et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med 2011, 3, doi:10.1126/scitranslmed.3002003.
[66]  Gefitinib (marketed as Iressa) Information, Available online: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm110473.htm , accessed on 07 July 2012.
[67]  Thatcher, N.; Chang, A.; Parikh, P.; Rodrigues Pereira, J.; Ciuleanu, T.; von Pawel, J.; Thongprasert, S.; Tan, E.H.; Pemberton, K.; Archer, V.; et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: Results from a randomized, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 2005, 366, 1527–1537.
[68]  Metro, G.; Crinò, L. Advances on EGFR mutation for lung cancer. Transl. Lung Cancer Res 2012, 1, 5–13.
[69]  Kim, Y.; Ko, J.; Cui, Z.; Abolhoda, A.; Ahn, J.S.; Ou, S.H.; Ahn, M.J.; Park, K. The EGFR T790M mutation in acquired resistance to an irreversible second-generation EGFR inhibitor. Mol. Cancer Ther 2012, 11, 784–791.
[70]  Boyer, J.M.; Blackhall, H.F.; Park, K.; Barrios, H.C.; Krzakowski, J.M.; Taylor, I.; Liang, Q.J.; Denis, J.L.; O’Connell, P.J.; Ramalingam, S.S. Efficacy and safety of PF299804 versus erlotinib (E): A global, randomized phase II trial in patients (pts) with advanced non-small cell lung cancer (NSCLC) after failure of chemotherapy (CT). J. Clin. Oncol 2010, 28, 18s.
[71]  Available online: http://www.ariad.com/wt/tertiarypage/alk_inhibitor , accessed on 24 June 2012.
[72]  Mehra, R.; Camidge, D.R.; Sharma, S.; Felip, E.; Tan, D.S.; Vansteenkiste, J.F.; de Pas, T.M.; Kim, D.W.; Santoro, A.; Liu, G.; et al. First-in-human phase I study of the ALK inhibitor LDK378 in advanced solid tumors. J. Clin. Oncol 2012, 30. abstr 3007.
[73]  Rizvi, A.N.; Pao, W.; Kris, G.M.; Rusch, V.; Ladanyi, M.; Ginex, K.P.; Zakowski, F.M.; Tyson, B.L.; Heelan, T.R.; Varmus, H. A prospective study to correlate EGFR mutations with gefitinib response. J. Clin. Oncol 2005, 23. abstr7091.
[74]  Milella, M.; Nuzzo, C.; Bria, E.; Sperduti, I.; Visca, P.; Buttitta, F.; Antoniani, B.; Merola, R.; Gelibter, A.; Cuppone, F.; et al. EGFR molecular profiling in advanced NSCLC: A prospective phase II study in molecularly/clinically selected patients pretreated with chemotherapy. J. Thorac. Oncol 2012, 7, 672–680.
[75]  Kim, E.S.; Herbst, R.S.; Wistuba, I.I.; Lee, J.J.; Blumenschein, G.R., Jr; Tsao, A.; Stewart, D.J.; Hicks, M.E.; Erasmus, J., Jr; Gupta, S.; et al. The BATTLE trial: Personalizing therapy for lung cancer. Cancer Discov. 2011, 1, 44–53.
[76]  Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012, 13, 239–246.
[77]  Zhou, C.; Wu, Y.L.; Chen, G.; Feng, J.; Liu, X.Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomised, phase 3 study. Lancet Oncol 2011, 12, 735–742.
[78]  Mitsudomi, T.; Morita, S.; Yatabe, Y.; Negoro, S.; Okamoto, I.; Tsurutani, J.; Seto, T.; Satouchi, M.; Tada, H.; Hirashima, T.; et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): An open label, randomised phase 3 trial. Lancet Oncol 2010, 11, 121–128.
[79]  Yang, C.J.; Schuler, H.M.; Yamamoto, N.; O’Byrne, J.K.; Hirsh, V.; Mok, T.; Geater, L.S.; Orlov, V.S.; Tsai, C.; Boyer, J.M.; et al. LUX-Lung 3: A randomized, open-label, phase III study of afatinib versus pemetrexed and cisplatin as first-line treatment for patients with advanced adenocarcinoma of the lung harboring EGFR-activating mutations. 2012, 30, 7500.
[80]  Inoue, A.; Kobayashi, K.; Maemondo, M.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Saijo, Y.; Yoshizawa, H.; Morita, S.; et al. Final overall survival results of NEJ002, a phase III trial comparing gefitinib to carboplatin (CBDCA) plus paclitaxel (TXL) as the first-line treatment for advanced non-small cell lung cancer (NSCLC) with EGFR mutations. J. Clin. Oncol 2011, 29. abstr 7519.
[81]  Kim, D.W.; Lee, S.H.; Lee, J.S.; Lee, M.A.; Kang, J.H.; Kim, S.Y.; Shin, S.W.; Kim, H.K.; Heo, D.S. A multicenter phase II study to evaluate the efficacy and safety of gefitinib as first-line treatment for Korean patients with advanced pulmonary adenocarcinoma harboring EGFR mutations. Lung Cancer 2011, 71, 65–69.
[82]  Tamura, K.; Okamoto, I.; Kashii, T.; Negoro, S.; Hirashima, T.; Kudoh, S.; Ichinose, Y.; Ebi, N.; Shibata, K.; Nishimura, T.; et al. Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: Results of the West Japan Thoracic Oncology Group trial (WJTOG0403). Br. J. Cancer 2008, 98, 907–914.
[83]  Sequist, L.V.; Martins, R.G.; Spigel, D.; Grunberg, S.M.; Spira, A.; J?nne, P.A.; Joshi, V.A.; McCollum, D.; Evans, T.L.; Muzikansky, A.; et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol 2008, 26, 2442–2449.
[84]  Inoue, A.; Kobayashi, K.; Usui, K.; Maemondo, M.; Okinaga, S.; Mikami, I.; Ando, M.; Yamazaki, K.; Saijo, Y.; Gemma, A.; et al. First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy. J. Clin. Oncol 2009, 27, 1394–1400.
[85]  Sugio, K.; Uramoto, H.; Onitsuka, T.; Mizukami, M.; Ichiki, Y.; Sugaya, M.; Yasuda, M.; Takenoyama, M.; Oyama, T.; Hanagiri, T.; et al. Prospective phase II study of gefitinib in non-small cell lung cancer with epidermal growth factor receptor gene mutations. Lung Cancer 2009, 64, 314–318.
[86]  Han, B.; Xiong, L.; Sun, J.; Li, R.; Lou, Y.; Zhang, Y. Erlotinib as neoadjuvant treatment in patients with stage IIIA-N2 non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation (NCT01217619, ESTERN). J. Clin. Oncol 2012, 30. abstr e17551.
[87]  Yang, J.C.; Shih, J.Y.; Su, W.C.; Hsia, T.C.; Tsai, C.M.; Ou, S.H.; Yu, C.J.; Chang, G.C.; Ho, C.L.; Sequist, L.V.; et al. Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): A phase II trial. Lancet Oncol 2012, 13, 539–548.
[88]  Kris, G.M.; Mok, T.; Ou, S.H.; Martins, R.; Kim, W.D.; Goldberg, Z.; Zhang, H.; Taylor, I.; Letrent, P.S.; Janne, A.P. First-line dacomitinib (PF-00299804), an irreversible pan-HER tyrosine kinase inhibitor, for patients with EGFR-mutant lung cancers. J. Clin. Oncol 2012, 30. abstr 7530.
[89]  Zhong, W.; Yang, X.; Liao, R.; Nie, Q.; Dong, S.; Su, J.; Zhang, X.; Zhou, Q.; Yang, J.; Wu, L.Y. Induction erlotinib or gemcitabine/carboplatin factorial assignment therapy in stage IIIA-N2 non-small cell lung cancer. J. Clin. Oncol 2011, 29. abstr e17512.
[90]  Rosell, R.; Perez-Roca, L.; Sanchez, J.J.; Cobo, M.; Moran, T.; Chaib, I.; Provencio, M.; Domine, M.; Sala, M.A.; Jimenez, U.; et al. Customized treatment in non-small-cell lung cancer based on EGFR mutations and BRCA1 mRNA expression. PLoS One 2009, 4, e5133.
[91]  Pietanza, M.C.; Gadgeel, S.M.; Dowlati, A.; Lynch, T.J.; Salgia, R.; Rowland, K.M., Jr; Wertheim, M.S.; Price, K.A.; Riely, G.J.; Azzoli, C.G.; et al. Phase II study of the multitargeted tyrosine kinase inhibitor XL647 in patients with non-small-cell lung cancer. J. Thorac. Oncol. 2012, 7, 856–865.
[92]  Sequist, L.V.; Besse, B.; Lynch, T.J.; Miller, V.A.; Wong, K.K.; Gitlitz, B.; Eaton, K.; Zacharchuk, C.; Freyman, A.; Powell, C.; et al. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: Results of a phase II trial in patients with advanced non-small-cell lung cancer. J. Clin. Oncol 2010, 28, 3076–3083.
[93]  Sorlini, C.; Barni, S.; Petrelli, F.; Novello, S.; de Marinis, F.; de Pas, M.T.; Grossi, F.; Bearz, A.; Mencoboni, M.; Aieta, M; et al. PROSE: Randomized proteomic stratified phase III study of second line erlotinib versus chemotherapy in patients with inoperable non-small cell lung cancer (NSCLC). J. Clin. Oncol 2011, 29. abstr TPS214.
[94]  Hisamoto, A.; Sasaki, J.; Takigawa, N.; Shioyama, Y.; Kishimoto, J.; Takemoto, M.; Hotta, K.; Tanimoto, M.; Ichinose, Y.; Kiura, K; et al. A phase II trial of induction gefitinib monotherapy followed by cisplatin-docetaxel and concurrent thoracic irradiation in patients with EGFR-mutant locally advanced non-small-cell lung cancer (LA-NSCLC): LOGIK0902/OLCSG0905 intergroup trial. J. Clin. Oncol 2012, 30. abstr 7045.
[95]  Kobayashi, T.; Koizumi, T.; Agatsuma, T.; Yasuo, M.; Tsushima, K.; Kubo, K.; Eda, S.; Kuraishi, H.; Koyama, S.; Hachiya, T.; et al. A phase II trial of erlotinib in patients with EGFR wild-type advanced non-small-cell lung cancer. Cancer Chemother. Pharmacol 2012, 69, 1241–1246.
[96]  Matsuura, S.; Inui, N.; Ozawa, Y.; Nakamura, Y.; Toyoshima, M.; Yasuda, K.; Yamada, T.; Shirai, T.; Suganuma, H.; Yokomura, K.; et al. Phase II study of erlotinib as third-line monotherapy in patients with advanced non-small-cell lung cancer without epidermal growth factor receptor mutations. Jpn. J. Clin. Oncol 2011, 41, 959–963.
[97]  Yoshioka, H.; Hotta, K.; Kiura, K.; Takigawa, N.; Hayashi, H.; Harita, S.; Kuyama, S.; Segawa, Y.; Kamei, H.; Umemura, S.; et al. A phase II trial of erlotinib monotherapy in pretreated patients with advanced non-small cell lung cancer who do not possess active EGFR mutations: Okayama Lung Cancer Study Group trial 0705. J. Thorac. Oncol 2010, 5, 99–104.
[98]  Garassino, C.M.; Martelli, O.; Bettini, A.; Floriani, I.; Copreni, E.; Lauricella, C.; Ganzinelli, M.; Marabese, M.; Broggini, M.; Veronese, S.; et al. TAILOR: A phase III trial comparing erlotinib with docetaxel as the second-line treatment of NSCLC patients with wild-type (wt) EGFR. J. Clin. Oncol 2012, 30. abstr LBA7501.
[99]  Metro, G.; Chiari, R.; Duranti, S.; Siggillino, A.; Fischer, M.J.; Giannarelli, D.; Ludovini, V.; Bennati, C.; Marcomigni, L.; Baldi, A.; et al. Impact of specific mutant KRAS on clinical outcome of EGFR-TKI-treated advanced non-small cell lung cancer patients with an EGFR wild type genotype. Lung Cancer 2012. in press.
[100]  Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med 2009, 361, 947–957.
[101]  Zhu, C.Q.; da Cunha Santos, G.; Ding, K.; Sakurada, A.; Cutz, J.C.; Liu, N.; Zhang, T.; Marrano, P.; Whitehead, M.; Squire, J.A.; et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J. Clin. Oncol 2008, 26, 4268–4275.
[102]  Janne, A.P.; Shaw, T.A.; Pereira, J.R.; Jeannin, G.; Vansteenkiste, J.; Barrios, H.C.; Franke, A.F.; Grinsted, L.; Smith, D.P.; Zazulina, V.; et al. Phase II double-blind, randomized study of selumetinib (SEL) plus docetaxel (DOC) versus DOC plus placebo as second-line treatment for advanced KRAS mutant non-small cell lung cancer (NSCLC). J. Clin. Oncol 2012, 30. abstr 7503.
[103]  Riely, J.G.; Brahmer, R.J.; Planchard, D.; Crinò, L.; Doebele, C.R.; Mas Lopez, L.; Gettinger, N.S.; Schumann, C.; Li, X.; Atkins, B.M.; et al. A randomized discontinuation phase II trial of ridaforolimus in non-small cell lung cancer (NSCLC) patients with KRAS mutations. J. Clin. Oncol 2012, 30. abstr 7531.
[104]  Crinò, L.; Kim, D.; Riely, J.G.; Janne, A.P.; Blackhall, H.F.; Camidge, R.D.; Hirsh, V.; Mok, T.; Solomon, J.B.; Park, K.; et al. Initial phase II results with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC): PROFILE 1005. J. Clin. Oncol 2011, 29. abstr 7514.
[105]  Kim, D.W.; Ahn, M.J.; Shi, Y.; De Pas, T.M.; Yang, P.C.; Riely, J.G.; Crinò, L.; Evans, L.T.; Liu, X.; Han, J.Y.; et al. Results of a global phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC). J. Clin. Oncol 2012, 30. abstr 7533.
[106]  Shaw, A.T.; Yeap, B.Y.; Solomon, B.J.; Riely, G.J.; Gainor, J.; Engelman, J.A.; Shapiro, G.I.; Costa, D.B.; Ou, S.H.; Butaney, M.; et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: A retrospective analysis. Lancet Oncol 2011, 12, 1004–1012.
[107]  Cho, W.; Ziogas, D.E.; Katsios, C.; Roukos, D.H. Emerging personalized oncology: Sequencing and systems strategies. Futur. Oncol 2012, 8, 637–641.
[108]  Daniels, M.; Goh, F.; Wright, C.M.; Sriram, K.B.; Relan, V.; Clarke, B.E.; Duhig, E.E.; Bowman, R.V.; Yang, I.A.; Fong, K.M.; et al. Whole genome sequencing for lung cancer. J. Thorac. Dis 2012, 4, 155–163.
[109]  Govindan, R.; Hammerman, S.P.; Hayes, N.D.; Wilkerson, D.M.; Baylin, S.; Meyerson, M. Comprehensive genomic characterization of squamous cell carcinoma of the lung. J. Clin. Oncol 2012, 30. abstr 7006.
[110]  Lee, W.; Jiang, Z.; Liu, J.; Haverty, P.M.; Guan, Y.; Stinson, J.; Yue, P.; Zhang, Y.; Pant, K.P.; Bhatt, D.; et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 2010, 465, 473–477.
[111]  Ju, Y.S.; Lee, W.C.; Shin, J.Y.; Lee, S.; Bleazard, M.T.; Won, J.K.; Kim, Y.T.; Kim, J.I.; Kang, J.H.; Seo, J.S. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012, 22, 436–445.
[112]  Belvedere, O.; Berri, S.; Chalkley, R.; Conway, C.; Barbone, F.; Pisa, F.; MacLennan, K.; Daly, C.; Alsop, M.; Morgan, J.; et al. A computational index derived from whole-genome copy number analysis is a novel tool for prognosis in early stage lung squamous cell carcinoma. Genomics 2012, 99, 18–24.
[113]  Tran, B.; Dancey, J.E.; Kamel-Reid, S.; McPherson, J.D.; Bedard, P.L.; Brown, A.M.; Zhang, T.; Shaw, P.; Onetto, N.; Stein, L.; et al. Cancer genomics: Technology, discovery, and translation. J. Clin. Oncol 2012, 30, 647–660.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133