The interactions between chemosensors, 3-amino-5-(4,5,6,7-tetrahydro-1 H-indol-2-yl)isoxazole-4-carboxamide ( AIC) derivatives, and different anions (F ? Cl ?, Br ?, AcO ?, and H 2PO 4 ?) have been theoretically investigated using DFT approaches. It turned out that the unique selectivity of AIC derivatives for F ? is ascribed to their ability of deprotonating the host sensors. Frontier molecular orbital (FMO) analyses have shown that the vertical electronic transitions of absorption and emission for the sensing signals are characterized as intramolecular charge transfer (ICT). The study of substituent effects suggests that all the substituted derivatives are expected to be promising candidates for fluoride chemosensors both in UV-vis and fluorescence spectra except for derivative with benzo[ d]thieno[3,2- b]thiophene fragment that can serve as ratiometric fluorescent fluoride chemosensor only.
References
[1]
Bianchi, A.; Bowman-James, K.; Garcia-Espana, E. Supramolecular Chemistry of Anions; Wiley-VCH: New York, NY, USA; p. 1997.
[2]
Deng, Y.; Chen, Y.; Cao, D.; Liu, Z.; Li, G. A cationic triarylborane as water-tolerant fluorescent chemosensor for fluoride anions. Sensors Actuator B-Chem 2010, 149, 165–169.
[3]
Li, J.Q.; Li, X.Y. Multichannel photoinduced intramolecular electron-transfer excitations in a bis-naphthalimide spermine conjugate by time-dependent density functional theory. Phys. Chem. A 2007, 111, 13061–13068.
[4]
Hagihara, S.; Tanaka, H.; Matile, S. Boronic acid converters for reactive hydrazide amplifiers: Polyphenol sensing in green tea with synthetic pores. J. Am. Chem. Soc 2008, 130, 5656–5657.
[5]
Yoon, J.; Kim, S.K.; Singh, N.J.; Kim, K.S. Imidazolium receptors for the recognition of anions. Chem. Soc. Rev 2006, 35, 355–360.
[6]
Gale, P.A. Structural and molecular recognition studies with acyclic anion receptors. Acc. Chem. Res 2006, 39, 465–475.
[7]
Callan, J.F.; de Silva, A.P.; Magri, D.C. Luminescent sensors and switches in the early 21st century. Tetrahedron 2005, 61, 8551–8588.
[8]
Martinez-Manez, R.; Sancanon, F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev 2003, 103, 4419–4476.
[9]
Valeur, B. Molecular Fluorescence; Wiley-VCH: Weinhein, Germany; p. 2002.
[10]
Coll, C.; Marínez-Má?ez, R.; Dolores, M.M.; Sancenón, F.; Soto, J. A simple approach for the selective and sensitive colorimetric detection of anionic surfactants in water. Angew. Chem. Int. Ed 2007, 46, 1675–1678.
[11]
Evans, L.S.; Gale, P.A.; Light, M.E.; Quesada, R. Anion binding vs deprotonation in colorimetric pyrrolylamidothiourea based anion sensors. Chem. Commun 2006, 965–967.
[12]
Kirk, K.L. Biochemistry of the Halogens and Inorganic Halides; Plenum Press: New York, NY, USA, 1991.
[13]
Kleerekoper, M. The role of calcitonin in the prevention of osteoporosis. Endocrin. Metab. Clin. North. Am 1998, 27, 414–418.
[14]
Zhang, S.W.; Swager, T.M. Fluorescent detection of chemical warfare agents: Functional group specific ratiometric chemosensors. J. Am. Chem. Soc 2003, 125, 3420–3421.
[15]
Kim, S.K.; Yoon, J. A new fluorescent PET chemosensor for fluoride ions. Chem. Commun 2002, 770–771.
[16]
Peng, X.; Wu, Y.; Fan, J.; Tian, M.; Han, K. Colorimetric and ratiometric fluorescence sensing of fluoride: Tuning selectivity in proton transfer. J. Org. Chem 2005, 70, 10524–10531.
[17]
Li, Z.; Zhang, J. An efficient theoretical study on host–guest interactions of a fluoride chemosensor with F?, Cl?, and Br?. Chem. Phys 2006, 331, 159–163.
[18]
Thiagarajan, V.; Ramamurthy, P. Specific optical signalling of anions via intramolecular charge transfer pathway based on acridinedione fluorophore. J. Lumin 2007, 126, 886–892.
[19]
Kim, S.K.; Bok, J.H.; Bartsch, R.A.; Lee, J.Y.; Kim, J.S. A fluoride-selective PCT chemosensor based on formation of a static pyrene excimer. Org. Lett 2005, 7, 4839–4842.
[20]
Chow, C.F.; Chiu, B.K.W.; Lam, M.H.W.; Wong, W.Y. A trinuclear heterobimetallic Ru(II)/Pt(II) complex as a chemodosimeter selective for sulfhydryl-containing amino acids and peptides. J. Am. Chem. Soc 2003, 125, 7802–7803.
[21]
Yang, Z.; Zhang, K.; Gong, F.; Li, S.; Chen, J.; Ma, J.S.; Sobenina, L.N.; Mikhaleva, A.I.; Yang, G.; Trofimov, B.A. A new fluorescent chemosensor for fluoride anion based on a pyrrole–isoxazole derivative. Beilstein. J. Org. Chem 2011, 7, 46–52.
Simon, S.; Duran, M.; Dannenberg, J.J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys 1996, 105, 11024–11031.
[24]
Handy, N.C. The molecular physics lecture 2004: (i) Density functional theory; (ii) Quantum Monte Carlo. Mol. Phys 2004, 102, 2399–2499.
[25]
Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. A long-range-corrected time-dependent density functional theory. J. Chem. Phys 2004, 120, 8425–8433.
[26]
Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett 2004, 393, 51–57.
[27]
Kobayashi, R.; Amos, R.D. The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin–bacteriochlorin complex. Chem. Phys. Lett 2006, 420, 106–109.
[28]
Kerkines, I.S.K.; Petsalakis, I.D.; Theodorakopoulos, G. Excited-state intramolecular proton transfer in hydroxyoxime-based chemical sensors. J. Phys. Chem. A 2011, 115, 834–840.
[29]
Rostov, I.V.; Amos, R.D.; Kobayashi, R.; Scalmani, G.; Frisch, M.J. Studies of the ground and excited-state surfaces of the retinal chromophore using CAM-B3LYP. J. Phys. Chem. B 2010, 114, 5547–5555.
[30]
Liu, X.; Zhang, X.; Hou, Y.; Teng, F.; Lou, Z. Theoretical investigation on properties of the ground and lowest excited states of a red emitter with donor-p-acceptor structure. Chem. Phys 2011, 381, 100–104.
[31]
Monari, A.; Assfeld, X.; Beley, M.; Gros, P.C. Theoretical study of new ruthenium-based dyes for dye-sensitized solar cells. J. Phys. Chem. A 2011, 115, 3596–3603.
[32]
Cornard, J.P.; Lapouge, C. Absorption spectra of caffeic acid, caffeate and their 1:1 complex with Al(III): Density functional theory and time-dependent density functional theory investigations. J. Phys. Chem. A 2006, 110, 7159–7166.
[33]
Bader, R.F.W. A bond path: A universal indicator of bonded interactions. J. Phys. Chem. A 1998, 102, 7314–7323.
[34]
Biegler-K?nig, F. AIM2000; University of Applied Sciences Bielefeld: Bielefeld, Germany, 2000.
Steiner, T.; Desiraju, G.R. Distinction between the weak hydrogen bond and the van der waals interaction. Chem. Commun 1998, 891–892.
[37]
Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed 2002, 41, 48–76.
[38]
Amendola, V.; Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M. What anions do to N–H-containing receptors. Acc. Chem. Res 2006, 39, 343–353.
[39]
Schwenke, D.W.; Truhlar, D.G. Systematic study of basis set superposition errors in the calculated interaction energy of two HF molecules. J. Chem. Phys 1985, 82, 2418–2426.
[40]
Sidorkin, V.F.; Doronina, E.P.; Chipanina, N.N.; Aksamentova, T.N.; Shainyan, B.A. Bifurcate hydrogen bonds. Interaction of intramolecularly H-bonded systems with Lewis bases. J. Phys. Chem. A 2008, 112, 6227–6234.
[41]
Nagaraju, M.; Narahari, S.G. Effect of alkyl substitution on H-bond strength of substituted amide-alcohol complexes. J. Mol. Model 2011, 17, 1801–1816.
[42]
Karab?y?k, H.; Sevin?ek, R.; Petek, H.; Aygün, M. Aromaticity balance, π-electron cooperativity and H-bonding properties in tautomerism of salicylideneaniline: The quantum theory of atoms in molecules (QTAIM) approach. J. Mol. Model 2011, 7, 1295–1309.
[43]
Abramov, Y.A. On the possibility of kinetic energy density evaluation from the experimental electron-density distribution. Acta. Crystallogr. A 1997, 53, 264–272.
[44]
Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, UK; p. 1994.
[45]
Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett 1998, 285, 170–173.
[46]
Coppens, P.; Abramov, Y.; Carducci, M.; Korjov, B.; Novozhilova, I.; Alhambra, C.; Pressprich, M.R. Experimental charge densities and intermolecular interactions: Electrostatic and topological analysis of dl-histidine. J. Am. Chem. Soc 1999, 121, 2585–2593.
[47]
Musin, R.N.; Mariam, Y.H. An integrated approach to the study of intramolecular hydrogen bonds in malonaldehyde enol derivatives and naphthazarin: Trend in energetic versus geometrical consequences. J. Phys. Org. Chem 2006, 19, 425–444.
[48]
Nakanishi, W.; Hayashi, S.; Narahara, K. Atoms-in-molecules dual parameter analysis of weak to strong interactions: Behaviors of electronic energy densities versus laplacian of electron densities at bond critical points. J. Phys. Chem. A 2008, 112, 13593–13599.
[49]
Forés, M.; Duran, M.; Solà, M.; Adamowicz, L. Excited-state intramolecular proton transfer and rotamerism of 2-(2′-hydroxyvinyl)benzimidazole and 2-(2′-hydroxyphenyl)imidazole. J. Phys. Chem. A 1999, 103, 4413–4420.
[50]
Helal, A.; Rashid, M.H.O.; Choi, C.-H.; Kim, H.-S. Chromogenic and fluorogenic sensing of Cu2+ based on coumarin. Tetrahedron 2011, 67, 2794–2802.