Application of Novel Polymorphic Microsatellite Loci Identified in the Korean Pacific Abalone (Haliotis diversicolor supertexta (Haliotidae)) in the Genetic Characterization of Wild and Released Populations
The small abalone, Haliotis diversicolor supertexta, of the family Haliotidae, is one of the most important species of marine shellfish in eastern Asia. Over the past few decades, this species has drastically declined in Korea. Thus, hatchery-bred seeds have been released into natural coastal areas to compensate for the reduced fishery resources. However, information on the genetic background of the small abalone is scarce. In this study, 20 polymorphic microsatellite DNA markers were identified using next-generation sequencing techniques and used to compare allelic variation between wild and released abalone populations in Korea. Using high-throughput genomic sequencing, a total of 1516 (2.26%; average length of 385 bp) reads containing simple sequence repeats were obtained from 86,011 raw reads. Among the 99 loci screened, 28 amplified successfully, and 20 were polymorphic. When comparing allelic variation between wild and released abalone populations, a total of 243 different alleles were observed, with 18.7 alleles per locus. High genetic diversity (mean heterozygosity = 0.81; mean allelic number = 15.5) was observed in both populations. A statistical analysis of the fixation index ( F ST) and analysis of molecular variance (AMOVA) indicated limited genetic differences between the two populations ( F ST = 0.002, p > 0.05). Although no significant reductions in the genetic diversity were found in the released population compared with the wild population ( p > 0.05), the genetic diversity parameters revealed that the seeds released for stock abundance had a different genetic composition. These differences are likely a result of hatchery selection and inbreeding. Additionally, all the primer pair sets were effectively amplified in another congeneric species, H. diversicolor diversicolor, indicating that these primers are useful for both abalone species. These microsatellite loci may be valuable for future aquaculture and population genetic studies aimed at developing conservation and management plans for these two abalone species.
References
[1]
Geiger, D. A total evidence cladistic analysis of the Haliotidae (Gastropoda: Vetigastropoda). Ph.D. Thesis, University of Southern California, Los Angeles, CA, USA, 1999.
[2]
Lee, Y.C.; Kuo, H.H.; Chen, Y.G. Discrimination and abundance estimation of wild and released abalone Haliotis diversicolor using stable carbon and oxygen isotope analysis in north-eastern Taiwan. Fish. Sci 2002, 68, 1020–1028.
[3]
Fisheries Information Service; Ministry for Food, Agriculture, Forestry and Fisheries: Gwacheon, Korea, 2009. Available online: http://www.fips.go.kr , accessed on 10 July 2012.
[4]
Ko, J.C.; Yoo, J.T.; Choi, Y.M.; Kim, J.W.; Im, Y.J. Fisheries management of an abalone Haliotis diversicolor in the eastern coastal waters of Jeju island using yield-per-recruit model (in Korean). Korean J. Malacol 2008, 24, 143–151.
[5]
Allendorf, F.W.; Ryman, N. Genetic Management of Hatchery Stocks. In Population Genetics and Fishery Management; Ryman, N., Utter, F., Eds.; University of Washington Press: Seattle, WA, USA, 1987; pp. 141–159.
[6]
Food and Agriculture Organization of the United Nations. Report of the expert consultation on utilization and conservation of aquatic genetic resources. FAO Fish Rep. 1993, 491, 1–58.
[7]
Reiss, H.; Hoarau, G.; Dickey-Collas, M.; Wolff, W.J. Genetic population structure of marine fish: Mismatch between biological and fisheries management units. Fish and Fisheries 2009, 10, 361–395.
[8]
Tauz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 1989, 17, 6463–6471.
[9]
Holland, B.S. Invasion without a bottleneck: Microsatellite variation in natural and invasive populations of the brown mussel Perna perna (L). Mar. Biotechnol 2001, 3, 407–415.
[10]
Lemay, M.A.; Boulding, E.G. Microsatellite pedigree analysis reveals high variance in reproductive success and reduced genetic diversity in hatchery-spawned northern abalone. Aquaculture 2009, 295, 22–29.
[11]
Ren, P.; Wang, Z.; Tao, C.; Liu, Y.; Ke, C. Development of 11 polymorphic microsatellite loci in the small abalone (Haliotis diversicolor Reeve). Mol. Ecol. Res 2008, 8, 1390–1392.
[12]
Zhan, X.; Hu, H.Y.; Ke, C.H.; Hu, S.N.; Wang, D.X.; Chen, F. Isolation and characterization of eleven microsatellite loci in small abalone, Haliotis diversicolor Reeve. Conserv. Genet 2009, 10, 1185–1187.
[13]
Wang, Y.; Wang, F.; Shi, Y.H.; Gu, Z.F.; Wang, A.M. Development and characterization of 60 microsatellite markers in the abalone Haliotis diversicolor. Genet. Mol. Res 2011, 10, 860–866.
[14]
Pompanon, F.; Bonin, A.; Bellemain, E.; Taberlet, P. Genotyping errors: Causes, consequences and solutions. Nat. Rev. Genet 2005, 6, 847–859.
[15]
Deitz, K.C.; Reddy, V.P.; Reddy, M.R.; Satyanarayanah, N.; Lindsey, M.W.; Overgaard, H.J.; Jawara, M.; Caccone, A.; Slotman, M.A. Limited usefulness of microsatellite markers from the malaria vector Anopheles gambiae when applied to the closely related species Anopheles melas. J. Hered 2012, 103, 585–593.
[16]
Zane, L.; Bargelloni, L.; Patarnello, T. Strategies for microsatellite isolation: A review. Mol. Ecol 2002, 11, 1–16.
[17]
Gao, H.; Cai, S.; Yan, B.; Chen, B.; Yu, F. Discrepancy variation of dinucleotide microsatellite repeats in eukaryotic genomes. Biol. Res 2009, 42, 365–375.
[18]
Schmuki, C.; Blacket, M.J.; Sunnucks, P. Anonymous single-copy nuclear DNA (scnDNA) markers for two endemic log-dwelling beetles: Apasis puncticeps and Adelium calosomoides (Tenebrionidae: Lagriinae: Adeliini). Mol. Ecol. Notes 2006, 6, 362–364.
[19]
Arthofer, W.; Schlick-Steiner, B.C.; Steiner, F.M.; Avtzis, D.N.; Crozier, R.H.; Stauffer, C. Lessons from a beetle and an ant: Coping with taxon-dependent differences in microsatellite development success. J. Mol. Evol 2007, 65, 304–307.
[20]
Santana, Q.; Coetze, M.; SteenKamp, E.; Mlonyeni, O.; Hammond, G.; Wingfield, M.; Wingfield, B. Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques 2009, 46, 217–223.
[21]
Perry, J.C.; Rowe, L. Rapid microsatellite development for water striders by next generation sequencing. J. Hered 2010, 102, 125–129.
[22]
Jun, T.H.; Michel, A.P.; Mian, M.A. Development of soybean aphid genomic SSR markers using next generation sequencing. Genome 2011, 54, 360–367.
[23]
Wang, J.; Yu, X.; Zhao, K.; Zhang, Y.; Tong, J.; Peng, Z. Microsatellite development for an endangered bream Megalobrama pellegrini (Teleostei, Cyprinidae) using 454 sequencing. Int. J. Mol. Sci 2012, 13, 3009–3021.
[24]
Greenley, A.P.; Muguia-Vega, A.; Saenz-Arroyo, A.; Micheli, F. New tetranucleotide microsatellite loci in pink abalone (Haliotis corrugata) isolated via 454 pyrosequencing. Conserv. Genet. Resour 2012, 4, 265–268.
Castoe, T.A.; Poole, A.W.; Gu, W.; de Konig, A.P.J.; Daza, J.M.; Smith, E.N.; Pollock, D.D. Rapid identification of thousands of copperhead snake microsatellite loci from modest amounts of 454 shotgun genome sequence. Mol. Ecol. Resour 2010, 10, 341–347.
[27]
Allentoft, M.E.; Schuster, S.C.; Holdaway, R.N.; Hale, M.L.; Mclat, E.; Oskam, C.; Gilbert, M.T.P.; Spencer, P.; Willerslev, E.; Bunce, M. Identification of microsatellites from an extinct moa species using highthroughput (454) sequence data. BioTechniques 2009, 46, 195–200.
[28]
Lai, Y.; Sun, F. The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol. Biol. Evol 2003, 20, 2123–2131.
[29]
Farrer, R.A.; Kemen, E.; Jones, J.D.; Studholme, D.J. De novo assembly of the Pseudomonas syringae pv. syringae B728a genome using Illumina/Solexa short sequence reads. FEMS Microbiol. Lett 2009, 291, 103–111.
[30]
Peakall, R.; Gilmore, S.; Keys, W.; Morgante, M.; Rafalski, A. Cross-species amplification of soybean (Glycine max) simple sequence repeats within the genus and other legume genera: Implications for the transferability of SSRs in plants. Mol. Biol. Evol 1998, 15, 1275–1287.
[31]
An, H.S.; Park, J.Y. Ten new highly polymorphic microsatellite loci in the blood clam Scapharca broughtonii. Mol. Ecol. Notes 2005, 5, 896–898.
[32]
Kenchington, E.L.; Patwary, M.U.; Zouros, E.; Bird, C.J. Genetic differentiation in relation to marine landscape in a broadcast-spawning bivalve mollusc (Placopecten magellanicus). Mol. Ecol 2006, 15, 1781–1796.
[33]
Launey, S.; Hedgecock, D. High genetic load in the Pacific oyster Crassostrea gigas. Genetics 2001, 159, 255–265.
[34]
Evans, B.; Bartlett, J.; Sweijd, N.; Cook, P.; Elliott, N.G. Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra) and South Africa (Haliotis midae). Aquaculture 2004, 233, 109–127.
[35]
Li, Q.; Yu, H.; Yu, R.H. Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (Crassostrea gigas) in China. Aquaculture 2006, 259, 95–102.
[36]
Callen, D.F.; Thompson, A.D.; Shen, Y.; Phillips, H.A.; Mulley, J.C.; Sutherland, G.R. Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am. J. Hum. Genet 1993, 52, 922–927.
[37]
Zhan, A.B.; Bao, Z.M.; Hu, X.L.; Hui, M.; Wang, M.L.; Peng, W.; Zhao, H.B.; Hu, J.J. Isolation and characterization of 150 novel microsatellite markers for Zhikong scallop (Chlamys farreri). Mol. Ecol. Notes 2007, 7, 1015–1022.
[38]
Li, Q.; Park, C.; Endo, T.; Kijima, A. Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone (Haliotis discus hannai). Aquaculture 2004, 235, 207–222.
[39]
Hara, M.; Sekino, M. Genetic differences between hatchery stocks and natural populations in Pacific Abalone (Haliotis discus) estimated using microsatellite DNA markers. Mar. Biotechnol 2007, 9, 74–81.
[40]
National Fisheries Research and Development Institute (NFRDI). Commercial Molluscs from the Freshwater and Continental Shelf in Korea: Order Archaeogastropoda; NFRDI: Busan, Korea, 1999; pp. 21–22.
[41]
Asahida, T.; Kobayashi, T.; Saitoh, K.; Nakayama, I. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentrations of urea. Fish. Sci. Tokyo 1996, 62, 727–730.
[42]
NCBI BLAST. The basic local alignment search tool of the national center for biotechnology information, Available online http://ncbi.nlm.nih.gov/blast , accessed on 1 June, 2012.
[43]
Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538.
[44]
Tiago, A.; Ana, L.; Ricardo, J.L.; Albano, B.-P.; Luikart, G. LOSITAN: A workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinfo 2008, 9, 323–327.
[45]
Rousset, F. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour 2008, 8, 103–106.
[46]
Goudet, J. FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3.2), Available online: http://www2.unil.ch/popgen/softwares/fstat.htm , accessed on 20 June, 2012.
[47]
Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370.
[48]
Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491.
[49]
Excoffier, L.; Laval, G.; Schneider, S. ARLEQUIN version 3.0: An integrated software package for population genetics data analysis. Evol. Bioinf. Online 2005, 1, 47–50.
[50]
Slatkin, M.; Excoffier, L. Testing for linkage disequilibrium in genotypic data using the EM algorithm. Heredity 1996, 76, 377–383.
Cornuet, J.M.; Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 1996, 144, 2001–2014.