全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cellular Delivery of Doxorubicin via pH-Controlled Hydrazone Linkage Using Multifunctional Nano Vehicle Based on Poly(β-L-Malic Acid)

DOI: 10.3390/ijms130911681

Keywords: polymalic acid, doxorubicin, nanoconjugate, pH-controlled hydrazine linkage, brain and breast cancer

Full-Text   Cite this paper   Add to My Lib

Abstract:

Doxorubicin (DOX) is currently used in cancer chemotherapy to treat many tumors and shows improved delivery, reduced toxicity and higher treatment efficacy when being part of nanoscale delivery systems. However, a major drawback remains its toxicity to healthy tissue and the development of multi-drug resistance during prolonged treatment. This is why in our work we aimed to improve DOX delivery and reduce the toxicity by chemical conjugation with a new nanoplatform based on polymalic acid. For delivery into recipient cancer cells, DOX was conjugated via pH-sensitive hydrazone linkage along with polyethylene glycol (PEG) to a biodegradable, non-toxic and non-immunogenic nanoconjugate platform: poly(β-L-malic acid) (PMLA). DOX-nanoconjugates were found stable under physiological conditions and shown to successfully inhibit in vitro cancer cell growth of several invasive breast carcinoma cell lines such as MDA-MB-231 and MDA-MB- 468 and of primary glioma cell lines such as U87MG and U251.

References

[1]  Wiernik, P.H.; Dutcher, J.P. Clinical importance of anthracyclines in the treatment of acute myeloid leukemia. Leukemia 1992, 6, 67–69.
[2]  Lown, J.W. Anthracycline and anthraquinone anticancer agents: Current status and recent developments. Pharmacol. Ther 1993, 60, 185–214.
[3]  Gottesman, M.M.; Pastan, I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem 1993, 62, 385–427.
[4]  Germann, U.A. P-Glycoprotein—A mediator of multidrug resistance in tumour cells. Eur. J. Cancer 1996, 32A, 927–944.
[5]  Borst, P.; Evers, R.; Kool, M.; Wijnholds, J. A family of drug transporters: The multidrug resistance-associated proteins. J. Natl. Cancer Inst 2000, 92, 1295–1302.
[6]  Marie, J.P.; Zhou, D.C.; Gurbuxani, S.; Legrand, O.; Zittoun, R. MDR1/P-Glycoprotein in haematological neoplasms. Eur. J. Cancer 1996, 32A, 1034–1038.
[7]  Kopecek, J.; Kopeckova, P.; Minko, T.; Lu, Z. HPMA copolymer-anticancer drug conjugates: Design, Activity, and mechanism of action. Eur. J. Pharm. Biopharm 2000, 50, 61–81.
[8]  Seymour, L.W.; Ulbrich, K.; Steyger, P.S.; Brereton, M.; Subr, V.; Strohalm, J.; Duncan, R. Tumour tropism and anti-cancer efficacy of polymer-based doxorubicin prodrugs in the treatment of subcutaneous murine B16F10 melanoma. Br. J. Cancer 1994, 70, 636–641.
[9]  Rihova, B.; Bilej, M.; Vetvicka, V.; Ulbrich, K.; Strohalm, J.; Kopecek, J.; Duncan, R. Biocompatibility of N-(2-Hydroxypropyl) methacrylamide copolymers containing adriamycin: Immunogenicity, and effect on haematopoietic stem cells in bone marrow in vivo and mouse splenocytes and human peripheral blood lymphocytes in vitro. Biomaterials 1989, 10, 335–342.
[10]  Rodrigues, P.C.; Beyer, U.; Schumacher, P.; Roth, T.; Fiebig, H.H.; Unger, C.; Messori, L.; Orioli, P.; Paper, D.H.; Mulhaupt, R.; et al. Acid-Sensitive polyethylene glycol conjugates of doxorubicin: Preparation, in vitro efficacy and intracellular distribution. Bioorg. Med. Chem 1999, 7, 2517–2524.
[11]  Ulbrich, K.; Etrych, T.; Chytil, P.; Jelinkova, M.; Rihova, B. HPMA copolymers with pH-controlled release of doxorubicin: In vitro cytotoxicity and in vivo antitumor activity. J. Control. Release 2003, 87, 33–47.
[12]  Nori, A.; Kopecek, J. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug Deliv. Rev 2005, 57, 609–636.
[13]  Duncan, R.; Vicent, M.J.; Greco, F.; Nicholson, R.I. Polymer-Drug conjugates: Towards a novel approach for the treatment of endrocine-related cancer. Endocr. Related Cancer 2005, 12, S189–S199.
[14]  Maeda, H.; Fang, J.; Inutsuka, T.; Kitamoto, Y. Vascular permeability enhancement in solid tumor: Various factors, mechanisms involved and its implications. Int. Immunopharmacol 2003, 3, 319–328.
[15]  Fujita, M.; Lee, B.S.; Khazenzon, N.M.; Penichet, M.L.; Wawrowsky, K.A.; Patil, R.; Ding, H.; Holler, E.; Black, K.L.; Ljubimova, J.Y. Brain tumor tandem targeting using a combination of monoclonal antibodies attached to Biopoly(β-l-Malic Acid). J. Control. Release 2007, 122, 356–363.
[16]  Lee, B.S.; Fujita, M.; Khazenzon, N.M.; Wawrowsky, K.A.; Wachsmann-Hogiu, S.; Farkas, D.L.; Black, K.L.; Ljubimova, J.Y.; Holler, E. Polycefin, a new prototype of a multifunctional nanoconjugate based on Poly(β-l-Malic Acid) for drug delivery. Bioconjug. Chem 2006, 17, 317–326.
[17]  Segal, E.; Satchi-Fainaro, R. Design and development of polymer conjugates as anti-angiogenic agents. Adv. Drug Deliv. Rev 2009, 61, 1159–1176.
[18]  Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol 2007, 2, 751–760.
[19]  Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161–171.
[20]  Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov 2003, 2, 347–360.
[21]  Vinogradov, S.V.; Batrakova, E.V.; Li, S.; Kabanov, A.V. Mixed polymer micelles of amphiphilic and cationic copolymers for delivery of antisense oligonucleotides. J. Drug Target 2004, 12, 517–526.
[22]  Kabanov, A.V.; Batrakova, E.V.; Sriadibhatla, S.; Yang, Z.; Kelly, D.L.; Alakov, V.Y. Polymer genomics: Shifting the gene and drug delivery paradigms. J. Control. Release 2005, 101, 259–271.
[23]  Barenholz, Y. Doxil?—The first fda-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134.
[24]  Ulbrich, K.; Etrych, T.; Chytil, P.; Jelinkova, M.; Rihova, B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J. Drug Target 2004, 12, 477–489.
[25]  Lee, C.C.; Gillies, E.R.; Fox, M.E.; Guillaudeu, S.J.; Frechet, J.M.; Dy, E.E.; Szoka, F.C. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. USA 2006, 103, 16649–16654.
[26]  Patil, R.; Portilla-Arias, J.; Ding, H.; Inoue, S.; Konda, B.; Hu, J.; Wawrowsky, K.A.; Shin, P.K.; Black, K.L.; Holler, E.; et al. Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on Poly(β-l-Malic Acid). Pharm. Res 2010, 27, 2317–2329.
[27]  Ding, H.; Inoue, S.; Ljubimov, A.V.; Patil, R.; Portilla-Arias, J.; Hu, J.; Konda, B.; Wawrowsky, K.A.; Fujita, M.; Karabalin, N.; et al. Inhibition of brain tumor growth by intravenous Poly(β-l-Malic Acid) nanobioconjugate with pH-Dependent drug release. Proc. Natl. Acad. Sci. USA 2010, 107, 18143–18148.
[28]  Inoue, S.; Ding, H.; Portilla-Arias, J.; Hu, J.; Konda, B.; Fujita, M.; Espinoza, A.; Suhane, S.; Riley, M.; Gates, M.; et al. Polymalic acid-based nanobiopolymer provides efficient systemic breast cancer treatment by inhibiting both Her2/Neu receptor synthesis and activity. Cancer Res , 71, 1454–1464.
[29]  Inoue, S.; Patil, R.; Portilla-Arias, J.; Ding, H.; Konda, B.; Espinoza, A.; Mongayt, D.; Markman, J.L.; Elramsisy, A.; Phillips, H.W.; et al. Nanobiopolymer for direct targeting and inhibition of EGFR expression in triple negative breast cancer. PLoS One 2012, 7, e31070.
[30]  Coessens, V.; Schacht, E.; Domurado, D. Synthesis of polyglutamine and dextran conjugates of streptomycin with an acid-sensitive drug-carrier linkage. J. Control. Release 1996, 38, 141–150.
[31]  Liu, Q.; Li, R.T.; Qian, H.Q.; Yang, M.; Zhu, Z.S.; Wu, W.; Qian, X.P.; Yu, L.X.; Jiang, X.Q.; Liu, B.R. Gelatinase-Stimuli Strategy enhances the tumor delivery and therapeutic efficacy of docetaxel-loaded Poly(Ethylene Glycol)-Poly(Varepsilon-Caprolactone) nanoparticles. Int. J. Nanomed 2012, 7, 281–295.
[32]  Wang, H.; Zhao, Y.; Wu, Y.; Hu, Y.L.; Nan, K.; Nie, G.; Chen, H. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 2011, 32, 8281–8290.
[33]  Zhang, L.; Hu, Y.; Jiang, X.; Yang, C.; Lu, W.; Yang, Y.H. Camptothecin derivative-loaded Poly(Caprolactone-Co-Lactide)-b-PEG-b-Poly(Caprolactone-Co-Lactide) nanoparticles and their biodistribution in mice. J. Control. Release 2004, 96, 135–148.
[34]  Wong, E.T.; Yamaguchi, N.H. Treatment advances for glioblastoma. Expert Rev. Neurother 2011, 11, 1343–1345.
[35]  Madhankumar, A.B.; Slagle-Webb, B.; Mintz, A.; Sheehan, J.M.; Connor, J.R. Interleukin-13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol. Cancer Ther 2006, 5, 3162–3169.
[36]  Bolhuis, H.; van Veen, H.W.; Poolman, B.; Driessen, A.J.; Konings, W.N. Mechanisms of multidrug transporters. FEMS Microbiol. Rev 1997, 21, 55–84.
[37]  Martin, V.; Xu, J.; Pabbisetty, S.K.; Alonso, M.M.; Liu, D.; Lee, O.H.; Gumin, J.; Bhat, K.P.; Colman, H.; Lang, F.F.; et al. Tie2-Mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters. Oncogene 2009, 28, 2358–2363.
[38]  Yap, T.A.; Workman, P. Exploiting the cancer genome: Strategies for the discovery and clinical development of targeted molecular therapeutics. Annu. Rev. Pharmacol. Toxicol 2012, 52, 549–573.
[39]  Holler, E. Poly(malic Acid) from Natural Sources. In Handbook of Engineering Polymeric Materials; Marcel Dekker: New York, NY, USA, 1997; Volume 997, pp. 93–103.
[40]  Hiemenz, P.C. Light Scattering by Polymer Solutions. In Polymer Chemistry: The Basic Concepts; Marcel Decker Inc.: New York, NY, USA, 1984; pp. 659–719.
[41]  International Organization for Standardization (ISO). Methods for Determination of Particle Size Distribution Part 8: Photon Correlation Spectroscopy; International Standard ISO 13321, ISO: Geneva, Switzerland, 1996.
[42]  Mosmann, T.J. Rapid colorimetric assays for cellular growth and survival: Application to proliferation and cytotoxicity assays. Immunol. Methods 1983, 65, 55–63.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133