全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Combination of Oxyanion Gln114 Mutation and Medium Engineering to Influence the Enantioselectivity of Thermophilic Lipase from Geobacillus zalihae

DOI: 10.3390/ijms130911666

Keywords: enantioselectivity, T1 lipase, organic solvents, Geobacillus zalihae, site-directed mutagenesis, desiccant

Full-Text   Cite this paper   Add to My Lib

Abstract:

The substitution of the oxyanion Q114 with Met and Leu was carried out to investigate the role of Q114 in imparting enantioselectivity on T1 lipase. The mutation improved enantioselectivity in Q114M over the wild-type, while enantioselectivity in Q114L was reduced. The enantioselectivity of the thermophilic lipases, T1, Q114L and Q114M correlated better with log p as compared to the dielectric constant and dipole moment of the solvents. Enzyme activity was good in solvents with log p < 3.5, with the exception of hexane which deviated substantially. Isooctane was found to be the best solvent for the esterification of ( R, S)-ibuprofen with oleyl alcohol for lipases Q114M and Q114L, to afford E values of 53.7 and 12.2, respectively. Selectivity of T1 was highest in tetradecane with E value 49.2. Solvents with low log p reduced overall lipase activity and dimethyl sulfoxide ( DMSO) completely inhibited the lipases. Ester conversions, however, were still low. Molecular sieves employed as desiccant were found to adversely affect catalysis in the lipase variants, particularly in Q114M. The higher desiccant loading also increased viscosity in the reaction and further reduced the efficiency of the lipase-catalyzed esterifications.

References

[1]  Forde, J.; Tully, E.; Vakurov, A.; Gibson, T.D.; Millner, P.; O’Fagain, C. Chemical modification and immobilization of laccase from Trametes hirsuta and from Myceliophthora thermophila. Enzym. Microb. Technol 2010, 46, 430–437.
[2]  Cong, F.; Xing, K.; Gao, R.-J.; Cao, S.-G.; Zhang, G. Enhanced activity and enantioselectivity of a hyperthermophilic esterase from archeon Aeropyrum pernix K1 by acetone treatment. Appl. Biochem. Biotechnol 2011, 165, 795–801.
[3]  Persson, M.; Costes, D.; Wehtje, E.; Adlercreutz, P. Preparation of lipases for use in organic solvents. Enzym. Microb. Technol 2002, 31, 916–923.
[4]  Ghanem, A. Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds. Tetrahedron 2007, 63, 1721–1754.
[5]  Overbeeke, P.L.A.; Jongejan, J.A.; Heijnen, J.J. Solvent effect on lipase enantioselectivity. Evidence for the presence of two thermodynamic states. Biotechnol. Bioeng 2000, 70, 278–290.
[6]  Wang, Y.; Li, Q.; Zhang, Z.; Ma, J.; Feng, Y.J. Solvent effects on the enantioselectivity of the thermophilic lipase QLM in the resolution of (R,S)-2-octanol and (R,S)-2-pentanol. J. Mol. Catal. B 2009, 56, 146–150.
[7]  Graber, M.; Irague, R.; Rosenfeld, E.; Lamare, S.; Franson, L.; Hult, K. Solvent as a competitive inhibitor for Candida antarctica lipase B. Biochim. Biophys. Acta 2007, 1774, 1052–1057.
[8]  Wang, Z.; Feng, Y.; Cao, S.G. The effect of microwater on the enzyme-catalyzed reaction in organic media and its controlling methods. Progr. Natl. Sci. (China) 2002, 12, 130–134.
[9]  Yu, S.S.; Yu, S.C.; Han, W.W.; Wang, H.L.; Zheng, B.S.; Feng, Y.J. A novel thermophilic lipase from Fervidobacterium nodosum Rt17-B1 representing a new subfamily of bacterial lipases. J. Mol. Catal. B 2010, 66, 81–89.
[10]  Leow, T.C.; Rahman, R.N.Z.; Basri, M.; Salleh, A.B. High level expression of thermostable lipase from Geobacillus sp. strain T1. Biol. Biotechnol. Biochem 2004, 68, 96–103.
[11]  Leow, T.C. Thermostable Lipase: Isolation, Gene Analysis, Expression, Characterization and Structure Elucidation. Ph.D. Thesis, Universiti Putra Malaysia, Serdang, Malaysia, October 2005.
[12]  Carrasco-Lopez, C.; Godoy, C.; de las Rivas, G.; de las Rivas, B.; Fernandez-Lorente, G.; Palomo, J.M.; Guisan, J.M.; Fernandez-Lafuente, R.; Martinez-Ripoll, M.; Hermoso, J.A. Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. J. Biol. Chem 2009, 284, 4365–4372.
[13]  Morley, K.L.; Kazlauskas, R.J. Improving enzyme properties: When are closer mutations better? Trends Biotechnol 2005, 23, 231–237.
[14]  Abdul Rahman, M.Z.; Salleh, A.B.; Raja Abdul Rahman, R.N.Z.; Abdul Rahman, M.B.; Basri, M.; Leow, T.C. Unlocking the mystery behind the activation phenomenon of T1 lipase: A molecular dynamics simulations approach. Protein Sci 2012, 21, 1210–1221.
[15]  Klibanov, A. Improving enzymes by using them in organic solvents. Process Biochem 2001, 43, 1259–1264.
[16]  Wen, S.; Tan, T.; Yu, M. Immobilised lipase YILip2-catalyzed resolution of (±)-phenylethylamine in a medium with organic solvent. Process Biochem 2008, 43, 1259–1264.
[17]  Pilissido, C.; de Oliveira, C.; da Graca, N.M. Enantioselective acylation of (R,S)-phenylethylamine catalyzed by lipases. Process Biochem 2009, 44, 1352–1357.
[18]  Fitzpatrick, P.A.; Klibanov, A.M. How can the solvent affect enzyme enantioselectivity. J. Am. Chem. Soc 1991, 113, 3166–3171.
[19]  Ghanem, A.; Aboul-Enein, H.Y. Lipase-Mediated chiral resolution by racemates in organic solvents. Tetrahedron Asymmetry 2004, 15, 3331–3351.
[20]  Zhao, D.; Xun, E.; Wang, J.; Wang, R.; We, X.; Wang, H.; Wang, Z. Enantioselective esterification of ibuprofen by a novel thermophilic biocatalyst: APE1547. Biotechnol. Bioprocess Eng 2011, 16, 638–644.
[21]  Gorman, L.A.S.; Dordick, J.S. Organic solvents strips water off enzymes. Biotechnol. Bioeng 1992, 39, 392–397.
[22]  Jongejan, J.A. Effects of Organic Solvents on Enzyme Selectivity. In Organic Synthesis with Enzymes in Non-Aqueous Media; Wiley: Weinheim, Germany, 2008; pp. 50–51.
[23]  Cheong, K.W.; Leow, T.C.; Rahman, R.N.Z.; Basri, M.; Rahman, M.B.; Salleh, A.B. Reductive alkylation causes the formation of a molten globule-like intermediate structure in Geobacillus zalihae T1 thermostable lipase. Appl. Biochem. Biotechnol 2011, 164, 362–375.
[24]  Liu, Z.-Q.; Zheng, X.-B.; Zhang, S.-P.; Zheng, Y.-G. Cloning, expression and characterization of a lipase gene from the Candida antarctica ZJB09193 and its application in biosynthesis of vitamin A esters. Microbiol. Rev 2012, 167, 452–460.
[25]  Ong, A.L.; Kamaruddin, A.H.; Long, W.S.; Lim, S.T.; Kumari, R. Performance of free Candida antarctica lipase B in the enantioselective esterification of (R)-ketoprofen. Enzym. Microb. Technol 2006, 39, 924–929.
[26]  Serdakowski, A.L.; Dordick, J.S. Enzyme activation for organic solvents made easy. Trends Biotechnol 2008, 25, 48–54.
[27]  Wang, Y.; Wei, D.Q.; Wang, J.F. Molecular dynamics studies on T1 lipase: Insight into a double-flap mechanism. J. Chem. Inf. Model 2010, 24, 875–878.
[28]  Antona, N.D.; Lombardi, P.; Nicolosi, G.; Salvo, G. Large scale preparation of enantiopure S-ketoprofen by biocatalyzed kinetic resolution. Process Biochem 2002, 38, 373–377.
[29]  Tawaki, S.; Klibanov, A.M. Inversion of enzyme enantioselectivity mediated by solvent. J. Am. Chem. Soc 1992, 114, 1882–1884.
[30]  Ducret, A.; Trani, M.; Lortie, R. Lipase-Catalyzed enantioselective esterification of ibuprofen in organic solvents under controlled water activity. Enzym. Microb. Technol 1998, 22, 212–216.
[31]  Zhang, G.; Gao, R.; Zheng, L.; Zhang, A.; Wang, Y.; Wang, Q.; Feng, Y.; Cao, S. Study of the relationship between structure and enantioselectivity of a hyperthermophilic esterase from Archeon aeropyrum pernix K1. J. Mol. Catal. B 2006, 38, 148–153.
[32]  Broos, J. Impact of the enzyme flexibility on the enantioselectivity in organic media towards specific and non-specific substrates. Biocatal. Biotrans 2002, 20, 291–295.
[33]  Nayeem, A.; Chiang, S.J.; Liu, S.W.; Sun, Y.; You, L.; Basch, J. Engineering enzymes for improved catalytic efficiency: A computational study of site mutagenesis in epothilone-B hydroxylase. Protein Eng. Des. Sel 2009, 22, 257–266.
[34]  Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 1976, 72, 248–254.
[35]  Chen, C.S.; Fujimoto, Y.; Girdaukas, G.; Sih, C.J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc 1982, 104, 7294–7299.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133