全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Combining the Physical Adsorption Approach and the Covalent Attachment Method to Prepare a Bifunctional Bioreactor

DOI: 10.3390/ijms130911443

Keywords: adsorption, amino-functionalized mesoporous silica, covalent attachment, myoglobin, lysozyme, peroxidase activity, antibacterial activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aminopropyl-functionalized SBA-15 mesoporous silica was used as a support to adsorb myoglobin. Then, in order to avoid the leakage of adsorbed myoglobin, lysozyme was covalently tethered to the internal and external surface of the mesoporous silica with glutaraldehyde as the coupling agent. The property of amino-functionalized mesoporous silica was characterized by N 2 adsorption-desorption and thermogravimetric (TG) analysis. The feature of the silica-based matrix before and after myoglobin adsorption was identified by fourier transform infrared (FTIR) and UV/VIS measurement. With o-dianisidine and H 2O 2 as the substrate, the peroxidase activity of adsorbed myoglobin was determined. With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured. Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme.

References

[1]  Pan, D.; Chen, J.; Yao, S.; Tao, W.; Nie, L. An amperometric glucose biosensor based on glucose oxidase immobilized in electropolymerized poly (o-aminophenol) and carbon nanotubes composite film on a gold electrode. Anal. Sci 2005, 21, 367–371.
[2]  Sakai-Kato, K.; Kato, M.; Ishihara, K.; Toyo’oka, T. An enzyme-immobilization method for integration of biofunctions on a microchip using a water-soluble amphiphilic phospholipid polymer having a reacting group. Lab Chip 2003, 4, 4–6.
[3]  You, C.; Xu, X.; Tian, B.; Kong, J.; Zhao, D.; Liu, B. Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions. Talanta 2009, 78, 705–710.
[4]  Takahashi, H.; Li, B.; Sasaki, T.; Miyazaki, C.; Kajino, T.; Inagaki, S. Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica. Chem. Mater 2000, 12, 3301–3305.
[5]  Kapoli, P.; Axarli, I.A.; Platis, D.; Fragoulaki, M.; Paine, M.; Hemingway, J.; Vontas, J.; Labrou, N.E. Engineering sensitive glutathione transferase for the detection of xenobiotics. Biosens. Bioelectr 2008, 24, 498–503.
[6]  Avnir, D.; Braun, S.; Lev, O.; Ottolenghi, M. Enzymes and other proteins entrapped in sol-gel materials. Chem. Mater 1994, 6, 1605–1614.
[7]  Diaz, J.F.; Balkus, K.J. Enzyme immobilization in MCM-41 molecular sieve. J. Mol. Catal. B 1996, 2, 115–126.
[8]  Yang, X.Y.; Li, Z.Q.; Liu, B.; Klein-hofmann, A.; Tian, G.; Feng, Y.F.; Ding, Y.; Su, D.S.; Xiao, F.S. “Fish-in-net” encapsulation of enzymes in macroporous cages for stable, reusable, and active heterogeneous biocatalysts. Adv. Mater 2006, 18, 410–414.
[9]  Wu, Z.; Dong, M.; Lu, M.; Li, Z. Encapsulation of β-galactosidase from Aspergillus oryzae based on “fish-in-net” approach with molecular imprinting technique. J. Mol. Catal. B 2010, 63, 75–80.
[10]  Liu, J.; Guan, J.; Lu, M.; Kan, Q.; Li, Z. Hemoglobin immobilized with modified “fish-in-net” approach for the catalytic removal of aniline. J. Hazard. Mater 2012, 217–218, 156–163.
[11]  Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.
[12]  Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552.
[13]  Fan, J.; Shui, W.; Yang, P.; Wang, X.; Xu, Y.; Wang, H.; Chen, X.; Zhao, D. Mesoporous silica nanoreactors for highly efficient proteolysis. Chem. Eur. J 2005, 11, 5391–5396.
[14]  Burkett, S.L.; Sims, S.D.; Mann, S. Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem. Commun 1996, (11), 1367–1368.
[15]  Richer, R. Direct synthesis of functionalized mesoporous silica by non-ionic alkylpolyethyleneoxide surfactant assembly. Chem. Commun 1998, (16), 1775–1777.
[16]  Macquarrie, D.J.; Jackson, D.B. Aminopropylated MCMs as base catalysts: A comparison with aminopropylated silica. Chem. Commun 1997, (18), 1781–1782.
[17]  Wang, X.; Lin, K.S.K.; Chan, J.C.C.; Cheng, S. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J. Phys. Chem. B 2005, 109, 1763–1769.
[18]  Yiu, H.H.P.; Wright, P.A. Enzymes supported on ordered mesoporous solids: A special case of an inorganic-organic hybrid. J. Mater. Chem 2005, 15, 3690–3700.
[19]  Deere, J.; Magner, E.; Wall, J.G.; Hodnett, B.K. Mechanistic and structural features of protein adsorption onto mesoporous silicates. J. Phys. Chem. B 2002, 106, 7340–7347.
[20]  Bos, M.A.; Shervani, Z.; Anusiem, A.C.I.; Giesbers, M.; Norde, W.; Kleijn, J.M. Influence of the electric potential of the interface on the adsorption of proteins. Colloid. Surf. B 1994, 3, 91–100.
[21]  Chong, A.S.M.; Zhao, X. Functionalization of SBA-15 with APTES and characterization of functionalized materials. J. Phys. Chem. B 2003, 107, 12650–12657.
[22]  Zhao, X.S.; Lu, G.Q.; Whittaker, A.K.; Millar, G.J.; Zhu, H.Y. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA. J. Phys. Chem. B 1997, 101, 6525–6531.
[23]  Rosenholm, J.M.; Lindén, M. Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas. Chem. Mater 2007, 19, 5023–5034.
[24]  Rimington, C. Spectral-absorption coefficients of some porphyrins in the Soret-band region. Biochem. J 1960, 75, 620.
[25]  Smith, G.J.; Ghiggino, K.P.; Bennett, L.E.; Nero, T.L. The “Q-band” absorption spectra of hematoporphyrin monomer and aggregate in aqueous solution. Photochem. Photobiol 1989, 49, 49–52.
[26]  Betancor, L.; Luckarift, H.R.; Seo, J.H.; Brand, O.; Spain, J.C. Three-dimensional immobilization of β-galactosidase on a silicon surface. Biotechnol. Bioeng 2008, 99, 261–267.
[27]  Claiborne, A.; Fridovich, I. Chemical and enzymic intermediates in the peroxidation of o-dianisidine by horseradish peroxidase 1. Spectral properties of the products of dianisidine oxidation. Biochemistry 1979, 18, 2324–2329.
[28]  Betancor, L.; Lopez-Gallego, F.; Hidalgo, A.; Alonso-Morales, N.; Mateo, G.D.O.C.; Fernandez-Lafuente, R.; Guisan, J.M. Different mechanisms of protein immobilization on glutaraldehyde activated supports: Effect of support activation and immobilization conditions. Enzyme Microb. Tech 2006, 39, 877–882.
[29]  Sil, S.; Chakraborti, A.S. Hematoporphyrin interacts with myoglobin and alters its functions. Mol. Cell. Biochem 2002, 237, 103–110.
[30]  Shugar, D. The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochim. Biophys. Acta 1952, 8, 302–309.
[31]  Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 1976, 72, 248–254.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133