全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis and Antimicrobial Activity of Some Novel Cross-Linked Chitosan Hydrogels

DOI: 10.3390/ijms130911194

Keywords: chitosan, chemical cross-linking, hydrogels, antimicrobial activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Four novel hydrogels based on chitosan were synthesized via a cross-linking reaction of chitosan with different concentrations of oxalyl bis 4-(2,5-dioxo-2 H-pyrrol-1(5 H)-yl)benzamide. Their structures were confirmed by fourier transform infrared X-ray (FTIR), scanning electron microscopy (SEM) and X-ray diffraction. The antimicrobial activities of the hydrogels against two crop-threatening pathogenic fungi namely: Aspergillus fumigatus ( A. fumigatus, RCMBA 06002), and Aspergillus niger ( A. niger, RCMBA 06106), and five bacterial species namely: Bacillis subtilis ( B. subtilis, RCMBA 6005), Staphylococcus aureus ( S. aureus, RCMBA 2004), Streptococcus pneumoniae ( S. pneumonia, RCMB 000101) as Gram positive bacteria, and Salmonella typhimurium ( S. typhimurium, RCMB 000104), and Escherichia coli ( E. coli, RCMBA 5003) as Gram negative bacteria have been investigated. The prepared hydrogels showed much higher antimicrobial activities than that of the parent chitosan. The hydrogels were more potent in case of Gram-positive bacteria than Gram-negative bacteria. Increasing the degree of cross-linking in the hydrogels resulted in a weaker antimicrobial activity.

References

[1]  Osada, Y.; Gong, J.-P. Soft and wet materials: Polymer gels. Adv. Mater 1998, 10, 827–837.
[2]  Graham, N.B.; McNeil, M.E. Hydrogels for controlled drug delivery. Biomaterials 1984, 5, 27–36.
[3]  Bae, Y.H.; Kim, S.W. Hydrogel delivery systems based on polymer blends, block-copolymers or interpenetrating networks. Adv. Drug. Del. Rev 1993, 11, 109–135.
[4]  Graham, N.B. Controlled drug delivery systems. Chem. Ind 1990, 15, 482–486.
[5]  Ravi Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym 2000, 46, 1–27.
[6]  Ravi Kumar, M.N.V.; Muzzarelli, R.A.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Synthesis of a chitosan-dendrimer hybrid and its biodegradation. Chem. Rev 2004, 104, 6017–6084.
[7]  Ge, J.; Cui, Y.; Yan, Y.; Jiang, W. The effect of structure on pervaporation of chitosan membrane. J. Membr. Sci 2000, 165, 75–81.
[8]  Zhang, W.; Yu, Z.; Qian, Q.; Zhang, Z.; Wang, X. Improving the pervaporation performance of the glutaraldehyde crosslinked chitosan membrane by simultaneously changing its surface and bulk structure. J. Membr. Sci 2010, 348, 213–223.
[9]  Mahdavinia, G.R.; Pourjavadi, A.; Mehr, M.J.Z. Synthesis and properties of highly swelling PAAm/chitosan Semi-IPN hydrogels. Macromol. Symp 2008, 274, 171–176.
[10]  Nakatsuka, S.; Andrady, A.L. Permeability of vitamin-B12 in chitosan membranes-effect of cross-linking and blending with poly(vinyl alcohol) on permeability. J. Appl. Polym. Sci 1992, 44, 17–28.
[11]  Schmidt, C.E.; Baier, J.M. Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering. Biomaterials 2000, 21, 2215–2231.
[12]  Wei, Y.C.; Hudson, S.M.; Mayer, J.M.; Kaplan, D.L. The crosslinking of chitosan fibers. J. Polym. Sci. Part A Polym. Chem 1992, 30, 2187–2193.
[13]  DeAngelis, A.A.; Capitani, D.; Crescenzi, V. Synthesis and 13C CP-MAS NMR characterization of a new chitosan-based polymeric network. Macromolecules 1998, 31, 1595–1601.
[14]  Julkapli, N.M.; Ahmad, Z.; Akil, H.M. Preparation and characterization of 1,2,4,5-benzenetetracarboxylic-chitosan. e-Polymers 2010, 77, 1–17.
[15]  Jin, J.; Song, M.; Hourston, D.J. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules 2004, 5, 162–168.
[16]  Kuboe, Y.; Tonegawa, H.; Ohkawa, K.; Yamamoto, H. Quinone cross-linked polysaccharide hybride fiber. Biomacromolecules 2004, 5, 348–357.
[17]  Welsh, E.R.; Schauer, C.L.; Qadri, S.B.; Price, R.R. Chitosan cross-linking with a water-soluble blocked diisocyanate. I. Solid state. Biomacromolecules 2002, 3, 1370–1374.
[18]  Gibson, S.L.; Walls, H.J.; Kennedt, S.B.; Welsh, E.R. Reaction kinetics and gel properties of blocked diisocyanate crosslinked chitosan hydrogels. Carbohydr. Polym 2003, 54, 193–199.
[19]  Ghazali, M.; Nawawi, M.; Huang, R.Y.M. Pervaporation dehydration of isopropanol with chitosan membrane. J. Membr. Sci 1997, 124, 53–62.
[20]  Devi, D.A.; Smitha, B.; Sridhar, S.; Aminabhavi, T.M. Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes. J. Membr. Sci 2005, 262, 91–99.
[21]  Kogan, G.; Skorik, Y.A.; Zitnanova, I.; Krizkova, L.; Durackova, Z.; Gomes, C.A.R. Antioxidant and antimutagenic activity of N-(2-carboxyethyl) chitosan. Toxicol. Appl. Pharmacol 2004, 201, 303–310.
[22]  Skorik, Y.A.; Gomes, C.A.R.; Vasconcelos, M.T.S.D.; Podberezskaya, N.V.; Romanenko, G.V.; Pinto, L.F. Complexation models of N-(2-carboxyethyl) chitosan with copper (II) ions. Biomacromolecules 2005, 6, 189–195.
[23]  Batista, M.K.S.; Pinto, L.F.; Gomes, C.A.R.; Gomes, P. Novel highly soluble peptide chitosan polymers: Synthesis and spectral characterization. Carbohydr. Polym 2006, 64, 299–305.
[24]  Gomes, P.; Gomes, C.A.R.; Batista, M.K.S.; Pinto, L.F.; Silva, P.A.P. Synthesis, structural characterization and properties of water-soluble N-(c-propanoyl-amino acid)-chitosans. Carbohydr. Polym 2008, 71, 54–65.
[25]  Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res 2000, 52, 662–668.
[26]  Hadwiger, L.A.; Kendra, D.F.; Fristensky, B.W.; Wagoner, W. Chitin in Nature and Technology; Muzzarelli, R.A.A., Jeuniaux, C., Gooday, C.W., Eds.; Plenum Press: New York, NY, USA, 1986; pp. 209–214.
[27]  Cuero, R.G.; Osuji, G.; Washington, A. N-carboxymethylchitosan inhibition of aflatoxin production: Role of zinc. Biotechnol. Lett 1991, 13, 441–444.
[28]  Mohamed, N.A.; Al-Dossary, A.O.H. Structure-property relationships for novel wholly aromatic polyamide-hydrazides containing various proportions of para-phenylene and meta-phenylene units. IV. Preparation and characterization of metallized plastic films through transition metal complexation. Polym. Test 2003, 22, 785–800.
[29]  El-Ghaouth, A.; Arul, J.; Grenier, J.; Asselin, A. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology 1992, 82, 398–402.
[30]  Eweis, M.; Elkholy, S.S.; Elsabee, M.Z. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. Int. J. Biol. Macromol 2006, 38, 1–8.
[31]  Nester, E.W.; Anderson, D.G.; Roberts, E.; Pearshall, N.N.; Nester, M.T. Synthesis, Characterization and Antifungal Properties of (N,O-(acyl)-N-Trimethyl) chitosan chloride. In Microbiology; McGraw-Hill: Boston, MA, USA, 2003; pp. 518–524.
[32]  Oishi, T.; Fujimoto, M. Synthesis and polymerization of N-[4-N′-(a-Methylbenzyl) aminocarbonylphenyl]maleimide. J. Polym. Sci. Part A Polym. Chem 1992, 30, 1821–1830.
[33]  Rao, B.S. Novel bis-maleimides via epoxy-carboxy addition reaction. Synthesis, characterization and thermal stability. J. Polym. Sci. Part C Polym. Lett 1988, 26, 3–10.
[34]  Rahman, A.; Choudhary, M.I.; Thomsen, W.J. Bioassay Techniques for Drug Development; Harwood Academic Publishers: Newark, NJ, USA, 2001; pp. 2024–2027.
[35]  Rathore, H.S.; Mittal, S.; Kumar, S. Synthesis, characterization and antifungal activities of 3d- transition metal complexes of 1-acetylpiperazinyldithiocarbamate, M(acpdtc)2. Pesticide Res. J 2000, 12, 103–107.
[36]  Damyanova, S.; Gomez, L.M.; Banares, M.A.; Fierro, J.L.G. Thermal stability of titania-supported 12-Moybdophosphoric heteropoly compounds. Chem. Mater 2000, 12, 501–510.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133