Gamma Irradiation of in-Shell and Blanched Peanuts Protects against Mycotoxic Fungi and Retains Their Nutraceutical Components during Long-Term Storage
Peanut samples were irradiated (0.0, 5.2, 7.2 or 10.0 kGy), stored for a year (room temperature) and examined every three months. Mycotoxic fungi (MF) were detected in non-irradiated blanched peanuts. A dose of 5.2 kGy was found suitable to prevent MF growth in blanched samples. No MF was detected in in-shell peanuts, with or without irradiation. The colors of the control in-shell and blanched samples were, respectively, 44.72 and 60.21 ( L *); 25.20 and 20.38 (Chroma); 53.05 and 86.46 (°Hue). The water activities (Aw) were 0.673 and 0.425. The corresponding fatty acids were 13.33% and 12.14% (C16:0), 44.94% and 44.92% (C18:1, ω9) and 37.10% and 37.63% (C18:2, ω6). The total phenolics (TP) were 4.62 and 2.52 mg GAE/g, with antioxidant activities (AA) of 16.97 and 10.36 μmol TEAC/g. Storage time negatively correlated with Aw (in-shell peanuts) or L *, linoleic acid, TP and AA (in-shell and blanched peanuts) but positively correlated with Aw (blanched peanuts), and with oleic acid (in-shell and blanched peanuts). Irradiation positively correlated with antioxidant activity (blanched peanuts). No correlation was found between irradiation and AA (in-shell samples) or fatty acids and TP (in-shell and blanched peanuts). Irradiation protected against MF and retained both the polyunsaturated fatty acids and polyphenols in the samples.
References
[1]
Dorner, J.W. Management and prevention of mycotoxins in peanuts. Food Addit. Contam. Part A 2008, 25, 203–208.
[2]
Van Boxtel, E.L.; van den Broek, L.A.M.; Koppelman, S.J.; Vincken, J.P.; Gruppen, H. Peanut allergen Ara h 1 interacts with proanthocyanidins into higher molecular weight complexes. J. Agric. Food Chem 2007, 55, 8772–8778.
[3]
Chiou, R.Y.Y.; Lin, C.M.; Shyu, S.L. Property characterization of peanut kernels subjected to gamma irradiation and its effect on the outgrowth and aflatoxin production by Aspergillus parasiticus. J. Food Sci 1990, 55, 210–213.
[4]
Prado, G.; Carvalho, E.P.; Madeira, J.E.G.C.; Morais, V.A.D.; Oliveira, M.S.; Corrêa, R.F.; Cardoso, V.N. Efeito da irradia??o (60Co) na frequência fúngica de amendoim in natura em fun??o do tempo de prateleira. Ciênc. Agrotec 2006, 30, 930–936.
[5]
Kilcast, D. Food irradiation: Current problems and future potential. Int. Biodeterior. Biodegrad 1995, 36, 279–296.
[6]
Oh, S.; Jang, D.I.; Lee, J.W.; Kim, J.H.; Byun, M.W.; Lee, S.Y. Evaluation of reduced allergenicity of irradiated peanut extract using splenocytes from peanut-sensitized mice. Radiat. Phys. Chem 2009, 78, 615–617.
[7]
Romagnani, S. The role of lymphocytes in allergic disease. J. Allergy Clin. Immunol 2000, 105, 399–408.
[8]
Nakai, V.K.; Rocha, L.D.; Goncalez, E.; Fonseca, H.; Ortega, E.M.M.; Correa, B. Distribution of fungi and aflatoxins in a stored peanut variety. Food Chem 2008, 106, 285–290.
[9]
Reed, K.A.; Sims, C.A.; Gorbet, D.W.; O’Keefe, S.F. Storage water activity affects flavor fade in high and normal oleic peanuts. Food Res. Int 2002, 35, 769–774.
[10]
Bhushan, B.; Bhat, R.; Sharma, A. Status of free radicals in indian monsooned coffee beans γ-irradiated for disinfestation. J. Agric. Food Chem 2003, 51, 4960–4964.
[11]
Mexis, S.F.; Kontominas, M.G. Effect of gamma irradiation on the physico-chemical and sensory properties of raw shelled peanuts (Arachis hypogaea L.) and pistachio nuts (Pistacia vera L.). J. Sci. Food Agric 2009, 89, 867–875.
[12]
Mexis, S.F.; Kontominas, M.G. Effect of γ-irradiation on the physicochemical and sensory properties of cashew nuts (Anacardium occidentale L.). LWT Food Sci 2009, 42, 1501–1507.
[13]
Mexis, S.F.; Kontominas, M.G. Effect of γ-irradiation on the physicochemical and sensory properties of hazelnuts (Corylus avellana L.). Radiat. Phys. Chem 2009, 78, 407–413.
[14]
Shahidi, F. Functional Foods: Their role in health promotion and disease prevention. J. Food Sci 2004, 69, 146–149.
[15]
Taylor, C.L. Qualified health claims: Letter of enforecement discretion—nuts and coronary heart disease. FDA Office of Nutritional Products Labeling and Dietary Supplements, Available online: http://www.fda.gov/Food/LabelingNutrition/LabelClaims/QualifiedHealthClaims/ucm072926.htm , accessed on 10 June 2012.
[16]
Farmer, E.H.; Bloomfield, G.F.; Sundralingam, A.; Sutton, D.A. The course and mechanism of autoxidation reactions in olefinic and polyolefinic substances, including rubber. Trans. Faraday Soc 1942, 38, 348–356.
[17]
Lou, H.X.; Yamazaki, Y.; Sasaki, T.; Uchida, M.; Tanaka, H.; Oka, S. A-type proanthocyanidins from peanut skins. Phytochemistry 1999, 51, 297–308.
[18]
Lou, H.X.; Yuan, H.Q.; Yamazaki, Y.; Sasaki, T.; Oka, S.C. Alkaloids and flavonoids from peanut skins. Planta Med 2001, 67, 345–349.
[19]
De Camargo, A.C.; Vieira, T.M.F.S.; Regitano-D’Arce, M.A.B.; de Alencar, S.M.; Calori-Domingues, M.A.; Canniatti-Brazaca, S.G. Gamma radiation induced oxidation and tocopherols decrease in in-shell, peeled and blanched peanuts. Int. J. Mol. Sci 2012, 13, 2827–2845.
[20]
Chukwumah, Y.; Walker, L.; Verghese, M. Peanut Skin Color: A biomarker for total polyphenolic content and antioxidative capacities of peanut cultivars. Int. J. Mol. Sci 2009, 10, 4941–4952.
[21]
De Camargo, A.C.; Canniatti-Brazaca, S.G.; Mansi, D.N.; Domingues, M.A.C.; Arthur, V. Gamma radiation effects at color, antioxidant capacity and fatty acid profile in peanut (Arachis hypogaea L.). Cienc. Tecnol. Aliment 2011, 31, 11–15.
[22]
Davis, J.P.; Dean, L.L.; Price, K.M.; Sanders, T.H. Roast effects on the hydrophilic and lipophilic antioxidant capacities of peanut flours, blanched peanut seed and peanut skins. Food Chem 2010, 119, 539–547.
[23]
Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric 1959, 10, 63–68.
[24]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med 1999, 26, 1231–1237.
[25]
G?lge, E.; Ova, G. The effects of food irradiation on quality of pine nut kernels. Radiat. Phys. Chem 2008, 77, 365–369.
[26]
Mexis, S.F.; Riganakos, K.A.; Kontominas, M.G. Effect of irradiation, active and modified atmosphere packaging, container oxygen barrier and storage conditions on the physicochemical and sensory properties of raw unpeeled almond kernels (Prunus dulcis). J. Sci. Food Agric 2011, 91, 634–649.
[27]
Hilmy, N.; Chosdu, R.; Matsuyama, A. The effect of humidity after gamma-irradiation on aflatoxin B-1 production of A. Flavus in ground nutmeg and peanut. Radiat. Phys. Chem 1995, 46, 705–711.
[28]
Nesci, A.; Montemarani, A.; Etcheverry, M.; Argentina, M. Assessment of mycoflora and infestation of insects, vector of Aspergillus section Flavi, in stored peanut from Argentina. Mycotox. Res 2011, 27, 5–12.
[29]
Farkas, J. Irradiation for better foods. Trends Food Sci. Technol 2006, 17, 148–152.
[30]
Horn, B.W. Colonization of wounded peanut seeds by soil fungi: Selectivity for species from Aspergillus section Flavi. Mycologia 2005, 97, 202–217.
[31]
Gon?alez, E.; Nogueira, J.H.C.; Fonseca, H.; Felicio, J.D.; Pino, F.A.; Corrêa, B. Mycobiota and mycotoxins in Brazilian peanut kernels from sowing to harvest. Int. J. Food Microbiol 2008, 123, 184–190.
[32]
Shin, E.C.; Craft, B.D.; Pegg, R.B.; Phillips, R.D.; Eitenmiller, R.R. Chemometric approach to fatty acid profiles in Runner-type peanut cultivars by principal component analysis (PCA). Food Chem 2010, 119, 1262–1270.
[33]
Andersen, P.C.; Gorbet, D.W. Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. J. Agric. Food Chem 2002, 50, 1298–1305.
[34]
O’Keefe, S.F.; Wiley, V.A.; Knauft, D.A. Comparison of oxidative stability of high- and normal-oleic peanut oils. J. Am. Oil Chem. Soc 1993, 70, 489–492.
[35]
Finley, J.W.; Shahidi, F. The Chemistry, Processing, and Health Benefits of Highly Unsaturated Fatty Acids: An Overview. In Omega-3 Fatty Acids: Chemistry, Nutrition, and Health Effects; Shahidi, F., Finley, J.W., Eds.; American Chemical Society: Washington, DC, USA, 2001; Volume 788, pp. 2–11.
[36]
Wang, J.; Yuan, X.P.; Jin, Z.Y.; Tian, Y.; Song, H.L. Free radical and reactive oxygen species scavenging activities of peanut skins extract. Food Chem 2007, 104, 242–250.
[37]
Ballard, T.S.; Mallikarjunan, P.; Zhou, K.Q.; O’Keefe, S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem 2010, 120, 1185–1192.
[38]
Wu, X.L.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem 2004, 52, 4026–4037.
[39]
Arranz, S.; Cert, R.; Perez-Jimenez, J.; Cert, A.; Saura-Calixto, F. Comparison between free radical scavenging capacity and oxidative stability of nut oils. Food Chem 2008, 110, 985–990.
[40]
Sobolev, V.S.; Cole, R.J. Note on utilisation of peanut seed testa. J. Sci. Food Agric 2004, 84, 105–111.
[41]
De Toledo, T.C.F.; Canniatti-Brazaca, S.G.; Arthur, V.; Piedade, S.M.S. Effects of gamma radiation on total phenolics, trypsin and tannin inhibitors in soybean grains. Radiat. Phys. Chem 2007, 76, 1653–1656.
[42]
?tajner, D.; Milosevic, M.; Popovic, B.M. Irradiation effects on phenolic content, lipid and protein oxidation and scavenger ability of soybean seeds. Int. J. Mol. Sci 2007, 8, 618–627.
[43]
Harrison, K.; Were, L.M. Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of Almond skin extracts. Food Chem 2007, 102, 932–937.
[44]
Villavicencio, A.; Mancini, J.; Delincee, H.; Greiner, R. Effect of irradiation on anti-nutrients (total phenolics, tannins and phytate) in Brazilian beans. Radiat. Phys. Chem 2000, 57, 289–293.
[45]
Nasar-Abbas, S.M.; Siddique, K.H.M.; Plummer, J.A.; White, P.F.; Harris, D.; Dods, K.; D’Antuono, M. Faba bean (Vicia faba L.) seeds darken rapidly and phenolic content falls when stored at higher temperature, moisture and light intensity. LWT Food Sci 2009, 42, 1703–1711.
[46]
Abramovic, H.; Butinar, B.; Nikolic, V. Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chem 2007, 104, 903–909.
[47]
De Camargo, A.C.; Vieira, T.M.F.S.; Regitano-D’Arce, M.A.B.; Calori-Domingues, M.A.; Canniatti-Brazaca, S.G. Gamma Radiation Effects on Peanut Skin Antioxidants. Int. J. Mol. Sci 2012, 13, 3073–3084.
[48]
Dixit, A.K.; Bhatnagar, D.; Kumar, V.; Rani, A.; Manjaya, J.G.; Bhatnagar, D. Gamma irradiation induced enhancement in isoflavones, total phenol, anthocyanin and antioxidant Properties of varying seed coat colored soybean. J. Agric. Food Chem 2010, 58, 4298–4302.
[49]
Talcott, S.T.; Duncan, C.E.; Del Pozo-Insfran, D.; Gorbet, D.W. Polyphenolic and antioxidant changes during storage of normal, mid, and high oleic acid peanuts. Food Chem 2005, 89, 77–84.
[50]
Pitt, J.I.; Hocking, A.D.; Glenn, D.R. An improved medium for the detection of Aspergillus flavus and A. parasiticus. J. Appl. Bacteriol 1983, 54, 109–114.
[51]
Hartman, L.; Lago, R.C. Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 1973, 22, 475–476.
[52]
American Oil Chemists’ Society (AOCS). American Oil Chemists’ Society (AOCS) Method Ce 1f-96. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed ed.; AOCS: Champaign, IL, USA, 2003.