New evidence has emerged over the last decade indicating that oligodendrocyte injury in multiple sclerosis (MS) is not a single unified phenomenon but rather a spectrum of processes ranging from massive immune destruction to a subtle cell death in the absence of significant inflammation. Experimentally, protection of oligodendrocytes against inflammatory injury results in protection against experimental autoimmune encephalitis, the animal model of multiple sclerosis. In this review, we will discuss the molecular mechanisms regulating oligodendrocyte injury and inflammatory demyelination. We draw attention to the injurious role of IFN-γ signaling in oligodendrocytes and the pro-inflammatory effect of their death. In conclusion, studying the molecular mechanisms of oligodendrocyte injury is likely to provide new perspective on the pathogenesis of MS and a rationale for cell protective therapies.
References
[1]
Noseworthy, J.; Lucchinetti, C.; Rodriguez, M.; Weinshenker, B.G. Multiple sclerosis. N. Engl. J. Med 2000, 343, 938–952.
[2]
Hafler, D.A. Multiple sclerosis. J. Clin. Invest 2004, 113, 788–794.
[3]
Lassmann, H. Multiple sclerosis pathology: Evaluation of pathogenic concepts. Brain Pathol 2005, 15, 217–222.
[4]
Lucchinetti, C.; Brück, W.; Parisi, J.; Scheitauer, B.; Rodriguez, M.; Lassmann, H. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol 2000, 47, 707–717.
[5]
Swanborg, R. Experimental allergic encephalomyelitis. Methods Enzymol 1988, 162, 413–421.
[6]
Wingerchuk, D.M. Environmental factors in multiple sclerosis: Epstein-Barr virus, vitamin D, and cigarette smoking. Mt. Sinai J. Med 2011, 78, 221–230.
[7]
International Multiple Sclerosis Genetics Consortium (MSGC). Refining genetic associations in multiple sclerosis. Lancet Neurol. 2008, 7, 567–569.
[8]
Willer, C.J.; Dyment, D.A.; Risch, N.J.; Sadovnick, A.D.; Ebers, G.C. Canadian Collaborative Study Group. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2003, 100, 12877–12882.
[9]
Raine, C.S. Oligodendrocytes and Central Nervous System Myelin. In Textbook of Neuropathology, 2nd ed; Davis, R.L., Robertson, D.M., Eds.; Williams and Wilkins: Baltimore, MD, USA, 1991; pp. 115–141.
[10]
Hartline, D.K.; Colman, D.R. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr. Biol 2007, 17, R29–R35.
[11]
McTigue, D.M.; Tripathi, R.B. The life, death and replacement of oligodendrocytes in the adult CNS. J. Neurochem 2008, 107, 1–19.
[12]
Brady, S.T.; Witt, A.S.; Kirkpatrick, L.L.; de Waegh, S.M.; Readhead, C.; Tu, P.-H.; Lee, V.M.-Y. Formation of compact myelin is required for maturation of the axonal cytoskeleton. J. Neurosci 1999, 19, 7278–7288.
[13]
Smith, K.; McDonald, W. The pathophysiology of multiple sclerosis: The mechanisms underlying the production of symptoms and the natural history of the disease. Phil. Trans. R. Soc. Lond. B 1999, 354, 1649–1673.
[14]
Trapp, B.D.; Peterson, J.; Ransohoff, M.M.; Rudick, R.; M?rk, S.; B?, L. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med 1998, 338, 278–285.
[15]
Waxman, S.G. Acquired channelopathies in nerve injury and MS. Neurology 2001, 56, 1621–1627.
[16]
Barnett, M.H.; Prineas, J.W. Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion. Ann. Neurol 2004, 55, 458–468.
[17]
Rodriguez, M.; Scheithauer, B.W.; Forbes, G.; Kelly, P.J. Oligodendrocyte injury is an early event in multiple scleosis. Mayo Clin. Proc 1993, 68, 627–636.
[18]
Hisahara, S.; Araki, T.; Sugiyama, F.; Yagami, K.; Suzuki, M.; Abe, K.; Yamamura, K.; Miyazaki, J.; Momoi, T.; Satura, T.; et al. Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination. EMBO J 2000, 19, 341–348.
[19]
Hovelmeyer, N.; Hao, Z.; Kranidioti, K.; Kassiotis, G.; Buch, T.; Frommer, F.; von Hoch, L.; Kramer, D.; Minichiello, L.; Kollias, G.; et al. Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. J. Immunol 2005, 175, 5875–5884.
[20]
Balabanov, R.; Strand, K.; Goswami, R.; McMahon, E.; Begolka, W.; Miller, S.D.; Popko, B. Interferon-γ-oligodendrocyte interactions in the regulation of experimental autoimmune encephalomyelitis. J. Neurosci 2007, 27, 2013–2024.
[21]
McGuire, C.; Volckaert, T.; Wolke, U.; Sze, M.; de Rycke, R.; Waisman, A.; Prinz, M.; Beyaert, R.; Rasparakis, M.; van Loo, G. Oligodendrocyte-specific FADD deletion protects mice from autoimmune-mediated demyelination. J. Immunol 2010, 185, 7646–7653.
[22]
Ren, Z.; Wang, Y.; Tao, D.; Liebenson, D.; Liggett, T.; Goswami, R.; Stefoski, D.; Balabanov, R. Overexpression of the dominant negative form of interferon regulatory factor 1 in oligodendrocytes protects against experimental autoimmune encephalomyelitis. J. Neurosci 2011, 83, 8329–8341.
[23]
Mi, S.; Hu, B.; Hahm, K.; Luo, Y.; Hui, E.S.K.; Yuan, Q.; Wong, W.; Wang, L.; Su, H.; Chu, T.; et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat. Med 2005, 13, 1228–1233.
[24]
Butzkueven, H.; Zhang, J.-G.; Soilu-Hanninen, M.; Hochrein, H.; Chionh, F.; Shipham, K.A.; Emery, B.; Turnley, A.M.; Petratos, S.; Ernst, M.; et al. LIF receptor signaling limits immune mediated demyelination by enhancing oligodendrocyte survival. Nat. Med 2002, 8, 613–619.
[25]
Linker, R.; Maüer, M.; Gaupp, S.; Martini, R.; Holtmann, L.; Giess, R.; Rieckmann, P.; Lassmann, H.; Toyka, K.; Sendtner, M.; et al. CNTF is a major protective factor in demyelinating CNS disease: A neuroprotective cytokine as modulator in neuroinflammation. Nat. Med 2002, 8, 620–624.
[26]
Steinmann, L. Multiple sclerosis: A coordinated immunological attack against myelin in the central nervous system. Cell 1996, 185, 299–302.
[27]
Franklin, R.J.M. Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci 2002, 3, 705–714.
[28]
Babbe, H.; Roers, A.; Waisman, A.; Lassmann, H.; Goebels, N.; Hohlfeld, R.; Friese, M.; Schr?der, R.; Deckert, M.; Schmidt, S.; et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med 2000, 192, 393–404.
[29]
Neumann, H.; Medana, I.M.; Bauer, J.; Lassmann, H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 2002, 25, 313–319.
[30]
H?ftberger, R.; Aboul-Enein, F.; Brueck, W.; Lucchinetti, C.; Rodriguez, M.; Schmidbauer, M.; Jellinger, K.; Lassmann, H. Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol 2004, 14, 43–50.
[31]
Dowling, P.; Shang, G.; Raval, S.; Menonna, J.; Cook, S.; Husar, W. Involvement of the CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosis brain. J. Exp. Med 1996, 184, 1513–1518.
[32]
Selmaj, K.; Raine, C. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann. Neurol 1988, 23, 339–346.
[33]
Vartanian, T.; Li, Y.; Zhao, M.; Stefansson, K. Interferon-γ induced oligodendrocyte cell death: Implications for the pathogenesis of multiple sclerosis. Mol. Med 1995, 1, 732–743.
[34]
Pouly, S.; Belcher, B.; Blain, M.; Antel, J.P. Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated injury. J. Neuropathol. Exp. Neurol 2000, 59, 280–286.
[35]
Aquino, D.A.; Selmaj, K. Heat-shock proteins and gamma-delta T cell responses in the central nervous system. Chem. Immunol 1992, 53, 86–101.
[36]
Van Noort, J.M.; van Sechel, A.C.; Bajramovic, J.J.; el Ouagmiri, M.; Polman, C.H.; Lassmann, H.; Ravid, R. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 1995, 375, 798–801.
[37]
Genain, C.P.; Cannella, B.; Hauser, S.L.; Raine, C.S. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat. Med 1999, 5, 170–175.
[38]
Dubois-Dalcq, M.; Niedieck, B.; Buyse, M. Action of anti-cerebroside sera on myelinated nervous tissue cultures. Pathol. Eur 1970, 5, 331–347.
[39]
Schenck, M.; Carpinteiro, A.; Grassme, H.; Lang, F.; Gulbins, E. Ceramide: Physiological and pathophysiological aspects. Arch. Biochem. Biophys 2007, 462, 171–175.
[40]
Thorburne, S.K.; Juurlink, B.H. Low glutathione and high iron govern the susceptibility of oligodendrocyte precursors to oxidative stress. J. Neurochem 1996, 67, 1014–1022.
[41]
Lin, W.; Kemper, A.; Dupree, J.L.; Harding, H.P.; Ron, D.; Popko, B. Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain 2006, 129, 1306–1318.
[42]
McDonald, J.W.; Althomsons, S.P.; Hyrc, K.L.; Choi, D.W.; Goldberg, M.P. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainite receptor-mediated cytotoxicity. Nat. Med 1998, 4, 291–297.
[43]
Matute, C.; Torre, I.; Pérez-Gerdá, F.; Pérez-Samartín, A.; Alberdi, E.; Etxerbaria, E.; Arranz, A.M.; Ravid, R.; Rodriguez-Antigüedad, A.; Sánchez-Gómez, M.; et al. P2×7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorate experimental autoimmune encephalomyelitis. J. Neurosci 2007, 27, 9525–9533.
[44]
Singh, I.; Pahan, K.; Khan, M.; Singh, A.K. Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine mediated apoptosis in demyelinating diseases. J. Biol. Chem 1998, 273, 20354–20362.
[45]
Boullerne, A.I.; Rodriguez, J.J.; Touil, T.; Brochet, B.; Schmidt, S.; Abrous, N.D.; Le Moal, M.; Pua, J.R.; Jensen, M.A.; Mayo, W.; et al. Anti-S-nitrosocysteine antibodies are a predictive marker for demyelination in experimental autoimmune encephalomyelitis: Implications for multiple sclerosis. J. Neurosci 2002, 22, 123–132.
[46]
Lucchinetti, C.; Brück, W.; Parisi, J.; Scheithauer, B.; Rodriguez, M.; Lassmann, H. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain 1999, 122, 2279–2295.
[47]
Keirstead, K.S.; Blakemore, W.F. Identification of post-mitotic oligodendrocytes incapable of remyelination within demyelinated adult spinal cord. J. Neuropathol. Exp. Neurol 1997, 56, 1191–1201.
[48]
Wolswijk, G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 2002, 125, 338–349.
[49]
Baerwald, K.D.; Popko, B. Developing and mature oligodendrocytes respond differently to the immune cytokine interferon-gamma. J. Neurosci. Res 1998, 52, 230–239.
[50]
Bernardo, A.; Greco, A.; Levi, G.; Minghetti, L. Differential lipid peroxidation, Mn superoxide, and bcl-2 expression contribute to the maturation-dependent vulnerability of oligodendrocytes to oxidative stress. J. Neuropathol. Exp. Neurol 2003, 62, 509–519.
[51]
Patrikios, P.; Stadelmann, C.; Kutzelnigg, A.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Brück, W.; Lucchinetti, C.; Lassmann, H. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 2006, 129, 3165–3172.
[52]
Wolswijk, G. Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain 2000, 123, 105–115.
[53]
Ludwin, S.K.; Maitland, M. Long-term remyelination fails to reconstitute normal thickness of central myelin sheaths. J. Neurol. Sci 1984, 64, 193–198.
[54]
Bramow, S.; Frischer, J.M.; Lassmann, H.; Koch-Henriksen, N.; Lucchinetti, C.F.; S?rensen, P.S.; Laursen, H. Demyelination versus remyelination in progressive multiple sclerosis. Brain 2010, 133, 2983–2998.
[55]
Rodriguez, M.; Scheithauer, B. Ultrasctucture od multiple sclerosis. Ultratruct. Pathol 1994, 18, 3–13.
[56]
Aboul-Enein, F.; Rauschka, H.; Kornek, B.; Stadelmann, C.; Stefferl, A.; Brück, W.; Lucchinetti, C.; Schmidbauer, M.; Jellinger, K.; Lassmann, H. Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J. Neuropathol. Exp. Neurol 2003, 62, 25–33.
[57]
Bo, L.; Vedeler, C.A.; Nyland, H.I.; Trapp, B.D.; Mork, S.J. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol 2003, 62, 723–732.
[58]
Serafini, B.; Rosicarelli, B.; Magliozzi, R.; Stigliano, E.; Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 2004, 14, 164–174.
[59]
Magliozzi, R.; Howell, O.W.; Reeves, C.; Roncaroli, F.; Nicholas, R.; Serafini, B.; Aloisi, F.; Reynolds, R.A. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol 2010, 68, 477–493.
[60]
Steinman, L.; Zamvil, S.S. How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann. Neurol 2006, 60, 12–21.
[61]
Gao, X.; Kemper, A.; Popko, B. Advanced transgenic and gene-targeting approaches. Neurochem. Res. 1999, 24, 1181–1188.
[62]
Wang, Y.; Ren, Z.; Tao, D.; Tilwalli, S.; Goswami, R.; Balabanov, R. STAT1/IRF-1 signaling pathway mediates the injurious effect of interferon-gamma on oligodendrocyte progenitor cells. Glia 2010, 58, 195–208.
[63]
Balabanov, R.; Stand, K.; Kemper, A.; Lee, J.Y.; Popko, B. Suppressor of cytokine signaling 1 expression protects oligodendrocytes from the deleterious effects of interferon-gamma. J. Neurosci 2006, 26, 5143–5152.
[64]
Agresti, C.; Bernardo, A.; Del Russo, N.; Marziali, G.; Battistini, A.; Aloisi, F.; Levi, G.; Coccia, E.M. Synergistic stimulation of MHC class I and IRF-1 gene expression by IFN-gamma and TNF-alpha in oligodendrocytes. Eur. J. Neurosci 1998, 10, 2975–8293.
[65]
Stang, M.T.; Armstrong, M.J.; Watson, G.A.; Sung, K.Y.; Liu, Y.; Ren, B.; Yim, J.H. Interferon regulatory factor-1-induced apoptosis mediated by a ligand-independent fas-associated death domain pathway in breast cancer cells. Oncogene 2007, 26, 6420–6430.
[66]
Conte, E.; Manzella, L.; Zeuner, A.; Cocchiaro, G.; Conticello, C.; Zammataro, L.; Messina, C.G.; de Maria, R.; Messina, A. Involvement of interferon regulatory factor-1 in monocyte CD95 expression and CD95-mediated apoptosis. Cell Death Differ 2003, 10, 615–617.
[67]
Tompkins, S.; Padilla, M.; Dal Canto, J.; Ting, J.; Van Kaer, L.; Miller, S. De novo Central Nervous System processing of myelin antigen is required for the initiation of Experimental Autoimmune Encephalomyelitis. J. Immunol 2002, 168, 4173–4183.
[68]
Kassmann, C.M.; Lappe-Siefke, C.; Baes, M.; Brügger, B.; Mildner, A.; Werner, H.B.; Natt, O.; Michaelis, T.; Prinz, M.; Frahm, J.; et al. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat. Genet 2007, 39, 969–976.
[69]
Bergsbaken, T.; Fink, L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol 2009, 7, 99–109.