The common carp ( Cyprinus carpio) is an important aquaculture fish worldwide but only limited single nucleotide polymorphism (SNP) markers are characterized from expressed sequence tags (ESTs) in this species. In this study, 1487 putative SNPs were bioinformatically mined from 14,066 online ESTs mainly from the European common carp, with the occurrence rate of about one SNP every 173 bp. One hundred and twenty-one of these SNPs were selected for validation using PCR fragment sequencing, and 48 out of 81 primers could amplify the expected fragments in the Chinese common carp genome. Only 26 (21.5%) putative SNPs were validated, however, 508 new SNPs and 68 indels were identified. The ratios of transitions to transversions were 1.77 for exon SNPs and 1.05 for intron SNPs. All the 23 SNPs selected for population tests were polymorphic, with the observed heterozygosity (Ho) ranging from 0.053 to 0.526 (mean 0.262), polymorphism information content (PIC) from 0.095 to 0.357 (mean 0.246), and 21 SNPs were in Hardy–Weinberg equilibrium. These results suggest that different common carp populations with geographic isolation have significant genetic variation at the SNP level, and these new EST-SNP markers are readily available for genetics and breeding studies in common carp.
References
[1]
Wohlfarth, G.W. Heterosis for growth rate in common carp. Aquaculture 1993, 113, 31–46.
[2]
Food and Agriculture Organization of the United Nations Fisheries and Aquaculture Department. Fishery and Aquaculture Statistics, 2009; FAO: Rome, Italy, 2011. Available online: www.fao.org/fishery/statistics/global-aquaculture-production/en , accessed on 25 May 2012.
[3]
Crooijmans, R.; Bierbooms, V.; Komen, J.; Van, D.P.; Groenen, M. Microsatellite markers in common carp (Cyprinus carpio L.). Anim. Genet 1997, 28, 129–134.
[4]
Wang, D.; Liao, X.; Cheng, L.; Yu, X.; Tong, J. Development of novel EST-SSR markers in common carp by data mining from public EST sequences. Aquaculture 2007, 271, 558–574.
[5]
Yue, G.H.; Ho, M.Y.; Orban, L.; Komen, J. Microsatellites within genes and ESTs of common carp and their applicability in silver crucian carp. Aquaculture 2004, 234, 85–98.
[6]
Liu, Z.J.; Cordes, J.F. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 2004, 238, 1–37.
[7]
Garvin, M.R.; Saitoh, K.; Gharrett, A.J. Application of single nucleotide polymorphisms to non-model species: A technical review. Mol. Ecol. Resour 2010, 10, 915–934.
[8]
Picoult-Newberg, L.; Ideker, T.E.; Pohl, M.G.; Taylor, S.L.; Donaldson, M.A.; Nickerson, D.A.; Boyce-Jacino1, M. Mining SNPs from EST databases. Genome Res 1999, 9, 167–174.
[9]
Cenadelli, S.; Maran, V.; Bongioni, G.; Fusetti, L.; Parma, P.; Aleandri, R. Identification of nuclear SNPs in gilthead seabream. J. Fish Biol 2007, 70, 399–405.
[10]
Hayes, B.; Laerdahl, J.K.; Lien, S.; Moen, T.; Berg, P.; Hindar, K.; Davidson, W.S.; Koop, B.F.; Adzhubei, A.; Hoyheim, B. An extensive resource of single nucleotide polymorphism markers associated with Atlantic salmon (Salmo salar) expressed sequences. Aquaculture 2007, 265, 82–90.
[11]
Hubert, S.; Bussey, J.T.; Higgins, B.; Curtis, B.A.; Bowman, S. Development of single nucleotide polymorphism markers for Atlantic cod (Gadus morhua) using expressed sequences. Aquaculture 2009, 296, 7–14.
[12]
Vera, M.; álvarez-Dios, J.A.; Millán, A.; Pardo, B.G.; Bouza, C.; Hermida, M.; Fernández, C.; Herrán, R.; Molina-Luzón, M.J.; Martínez, P. Validation of single nucleotide polymorphism (SNP) markers from an immune expressed sequence tag (EST) turbot, Scophthalmus maximus, database. Aquaculture 2011, 313, 31–41.
[13]
Zheng, X.; Kuang, Y.; Zhang, X.; Lu, C.; Cao, D.; Li, C.; Sun, X. A genetic linkage map and comparative genome analysis of common carp (Cyprinus carpio L.) using microsatellites and SNPs. Mol. Genet. Genomics 2011, doi:10.1007/s00438-011-0644-x.
[14]
Nicod, J.C.; Largiadèr, C.R. SNPs by AFLP (SBA): A rapid SNP isolation strategy for non-model organisms. Nucleic Acids Res 2003, 31, doi:10.1093/nar/gng019.
[15]
Smith, C.T.; Elfstrom, C.M.; Seeb, L.W.; Seeb, J.E. Use of sequence data from rainbow trout and Atlantic salmon for SNP detection in Pacific salmon. Mol. Ecol 2005, 14, 4193–4203.
[16]
He, C.; Chen, L.; Simmons, M.; Li, P.; Kim, S.; Liu, Z.J. Putative SNP discovery in interspecific hybrids of catfish by comparative EST analysis. Anim. Genet 2003, 34, 445–448.
[17]
Larhammar, D.; Risinger, C. Molecular genetic aspects of tetraploidy in the common carp Cyprinus carpio. Mol. Phylogenet. Evol 1994, 3, 59–68.
[18]
David, L.; Blum, S.; Feldman, M.W.; Lavi, U.; Hillel, J. Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol. Biolo. Evol 2003, 20, 1425–1434.
[19]
Stickney, H.L.; Schmutz, J.; Woods, I.G.; Holtzer, C.C.; Dickson, M.C.; Kelly, P.D.; Myers, R.M.; Talbot, W.S. Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res 2002, 12, 1929–1934.
[20]
Andolfatto, P. Adaptive evolution of non-coding DNA in Drosophila. Nature 2005, 437, 1149–1152.
[21]
Lynch, M.; Koskella, B.; Schaack, S. Mutation pressure and the evolution of organelle genomic architecture. Science 2006, 311, 1727–1730.
[22]
Pedretti, K.; Scheetz, T.; Braun, T.; Roberts, C.; Robinson, N.; Casavant, T. A Parallel Expressed Sequence Tag (EST) Clustering Program. In Proceedings of the 6th International Conference on Parallel Computing Technologies; Malyshkin, V., Ed.; Springer-Verlag Berlin: Novosibirsk, Russia, 2001; pp. 490–497.
[23]
Gordon, D.; Abajian, C.; Green, P. Consed: A graphical tool for sequence finishing. Genome Res 1998, 8, 195–202.
[24]
Barker, G.; Batley, J.; O’Sullivan, H.; Edwards, K.J.; Edwards, D. Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 2003, 19, 421–422.
[25]
Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 2001; pp. 463–465.
[26]
Gallagher, P.M.; Lowe, G.; Fitzgerald, T.; Bella, A.; Greene, C.M.; McElvaney, N.G.; O’Neill, S.J. Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. Thorax 2003, 58, 154–156.
[27]
Gaudet, M.; Fara, A.-G.; Sabatti, M.; Kuzminsky, E.; Mugnozza, G.S. Single-reaction for SNP genotyping on agarose gel by allele-specific PCR in black poplar (Populus nigra L.). Plant Mol. Biol. Rep 2007, 25, 1–9.
[28]
Thompson, J.; Gibson, T.; Plewniak, F.; Jeanmougin, F.; Higgins, D. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25, 4876–4882.
[29]
Yeh, F.C.; Boyle, T. POPGENE: Microsoft Window-based Freeware for Population Genetic Analysis, version 1.31; University of Alberta: Edmonton, Canada, 1999.
[30]
Park, S.D.E. Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection. Ph.D. Dissertation, University of Dublin, Dublin, Ireland, 2001.
[31]
Excoffier, L.; Laval, G.; Schneider, S. ARLEQUIN: An integrated software package for population genetics data analysis. Version 3. Evol. Bioinform. Online 2005, 1, 47–50.