The aim of our study was to estimate the surface expressions of CD95 (APO-1/Fas) antigen and the intracellular expressions of anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax in CD4 +CD25 +FoxP3 + T regulatory lymphocytes (Tregs) as well as the percentage of CD8 +CD28 + T cytotoxic cells in peripheral blood of patients with pre-eclampsia in comparison with healthy pregnant women in the third trimester of physiological pregnancy. Twenty-four women with pre-eclampsia and 20 normal third trimester pregnant women were included in the study. The lymphocytes were isolated from peripheral blood samples and labeled with monoclonal antibodies. The expressions of surface antigens and intracellular proteins were estimated using flow cytometry. The population of CD4 +CD25 +FoxP3 + Treg cells was significantly lower in peripheral blood of patients with pre-eclampsia when compared to normal third trimester pregnant women. The percentages of CD4 +CD25 +FoxP3 + Treg cells that express Bcl-2 protein were significantly lower in peripheral blood of patients with pre-eclampsia when compared to healthy pregnant women, whereas the percentages of CD4 +CD25 +FoxP3 + Treg cells with the expressions of Bax protein did not differ in both groups. Moreover, the mean fluorescence intensity (MFI) of Bcl-2 protein in CD4 +CD25 +FoxP3 + Treg cells was significantly lower and MFI of Bax protein significantly higher in pre-eclampsia when compared to the control group. The percentage of CD8 +CD28 + T cells did not differ in both studied groups but MFI of CD28 antigen on T CD8 + cells was significantly higher in pre-eclampsia when compared to the control group. The obtained results suggest that the deficit of CD4 +CD25 +FoxP3 + Treg lymphocytes which is observed in pre-eclampsia may be associated with altered apoptosis signaling in Tregs.
References
[1]
Ahn, H.; Park, J.; Gilman-Sachs, A.; Kwak-Kim, J. Immunologic characteristics of preeclampsia, a comprehensive review. Am. J. Reprod. Immunol 2010, doi:10.1111/j.1600-0897.2010.00913.x.
[2]
Redman, C.W.G.; Sacks, G.P.; Sargent, I.L. Pre-eclampsia: An excessive maternal inflammatory response to pregnancy. Am. J. Obstet. Gynekol 1999, 180, 499–506.
[3]
Saito, S.; Umekage, H.; Sakamoto, Y. Increased Th1-type immunity and decreased Th2-type immunity in patients with preeclampsia. Am. J. Reprod. Immunol 1999, 41, 297–306.
[4]
Darmochwal-Kolarz, D.; Leszczynska-Gorzelak, B.; Rolinski, J.; Oleszczuk, J. T helper 1 type and T helper 2 type cytokines imbalance in pregnant women with pre-eclampsia. Eur. J. Obstet. Gynecol 1999, 86, 165–170.
[5]
Baecher-Allan, C.; Bron, J.A.; Freeman, G.J.; Hafler, D.A. CD4+CD25 high regulatory cells in human peripheral blood. J. Immunol 2001, 167, 1245–1253.
[6]
Kuniyasu, Y.; Takahashi, T.; Itoh, M.; Shimizu, J.; Toda, G.; Sakaguchi, S. Naturally anergic and suppressive CD25+CD4+ T cells as a functionally and phenotypically distinct immunoregulatory T cell subpopulation. Int. Immunol 2000, 12, 1145–1155.
[7]
Sakaguchi, S. Immunological tolerance maintained by CD4+CD25+ regulatory T cells: Their common role in controlling autoimmunity, tumor immunity and transplantation tolerance. Immunol. Rev 2001, 182, 18–32.
[8]
Fontenot, J.D.; Gavin, M.A.; Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol 2003, 4, 337–342.
[9]
Hori, S.; Nomura, T.; Sakaguchi, S. Control of regulatory T cells development by the transcription factor Foxp3. Science 2003, 299, 1057–1061.
[10]
Waldmann, H.; Graca, I.; Cobbold, S.; Adams, E.; Tone, M.; Tone, Y. Regulatory T cells and organ transplantation. Semin. Immunol 2004, 16, 119–126.
[11]
Tafuri, A.; Alferink, J.; M?ller, P.; H?mmerling, G.J.; Arnold, B. T cell awareness of paternal alloantigens during pregnancy. Science 1995, 270, 630–633.
[12]
Aluvihare, V.R.; Kallikourdis, M.; Betz, A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol 2004, 5, 266–271.
[13]
Sasaki, Y.; Sakai, M.; Miyazaki, S.; Higuma, S.; Shiozaki, A.; Saito, S. Decidual and peripheral blond regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod 2004, 10, 347–353.
[14]
Zenclussen, A.C.; Gerlof, K.; Zenclussen, M.L.; Sollwedel, A.; Bertoja, A.Z.; Ritter, T.; Kotsch, K.; Leber, J.; Volk, H.D. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: Adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am. J. Pathol 2005, 166, 811–822.
[15]
Darrasse-Jèze, G.; Klatzmann, D.; Charlotte, F.; Salomon, B.L.; Cohen, J.L. CD4+CD25+ regulatory/suppressor T cells prevent allogeneic fetus rejection in mice. Immunol. Lett 2006, 102, 106–109.
[16]
Sasaki, Y.; Darmochwal-Kolarz, D.; Suzuki, D.; Sakai, M.; Ito, M.; Shima, T.; Shiozaki, A.; Rolinski, J.; Saito, S. Proportion of peripheral blood and decidual CD4+ CD25bright regulatory T cells in pre-eclampsia. Clin. Exp. Immunol 2007, 149, 139–145.
[17]
Darmochwal-Kolarz, D.; Saito, S.; Rolinski, J.; Tabarkiewicz, J.; Kolarz, B.; Leszczynska-Gorzelak, B.; Oleszczuk, J. Activated T lymphocytes in pre-eclampsia. Am. J. Reprod. Immunol 2007, 58, 39–45.
[18]
Santner-Nanan, B.; Peek, M.J.; Khanam, R.; Richarts, L.; Zhu, E.; Fazekas de St Groth, B.; Nanan, R. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J. Immunol 2009, 183, 7023–7030.
[19]
Darmochwal-Kolarz, D.; Kludka-Sternik, M.; Tabarkiewicz, J.; Kolarz, B.; Rolinski, J.; Leszczynska-Gorzelak, B.; Oleszczuk, J. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J. Reprod. Immunol 2012, 93, 75–81.
[20]
Paeschke, S.; Chen, F.; Horn, N.; Fotopoulou, C.; Zambon-Bertoja, A.; Sollwedel, A.; Zenclussen, M.L.; Casalis, P.A.; Dudenhausen, J.W.; Volk, H.D.; et al. Pre-eclampsia is not associated with changes in the levels of regulatory T cells in peripheral blood. Am. J. Reprod. Immunol 2005, 54, 384–389.
[21]
Hu, D.; Chen, Y.; Zhang, W.; Wang, H.; Wang, Z.; Dong, M. Alteration of peripheral CD4+CD25+ regulatory T lymphocytes in pregnancy and pre-eclampsia. Acta Obstet. Gynecol. Scand 2008, 87, 190–194.
[22]
Civil, A.; Geerts, M.; Aarden, L.A.; Verweij, C.L. Evidence for a role of CD28RE as a response element for distinct mitogenic T cell activation signals. Eur. J. Immunol 1992, 22, 3041–3043.
[23]
Tilburgs, T.; Roelen, D.L.; van der Mast, B.J.; van Schip, J.J.; Kleijburg, C.; de Groot-Swings, G.M.; Kanhai, H.H.; Claas, F.H.; Scherjon, S.A. Differential distribution of CD4+CD25bright and CD8+CD28? T-cells in decidua and maternal blood during human pregnancy. Placenta 2006, 27, S47–S53.
[24]
Reed, J.C. Bcl-2 family proteins. Oncogene 1998, 17, 3225–3236.
[25]
Oltavi, Z.N.; Milliman, C.L.; Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993, 74, 609–619.
[26]
Nagata, S.; Golstein, P. The fast death factor. Science 1995, 267, 1449–1456.
[27]
Lynch, D.H.; Ramsdell, F.; Alderson, M.R. Fas and FasL in the homeostatic regulation of immune responses. Immunol. Today 1995, 16, 569–574.
[28]
Wegmann, T.G. Bi-directional cytokine interactions in the maternal-fetal relationship: Is successful pregnancy a Th2 phenomenon? Immunol. Today 1993, 14, 353–356.
[29]
Chaouat, G.; Tranchot Diallo, J.; Volumenie, J.L.; Menu, E.; Gras, G.; Delage, G.; Mognetti, B. Immune suppression and Th1/Th2 balance in pregnancy revisited: A (very) personal tribute to Tom Wegmann. Am. J. Reprod. Immunol 1997, 37, 427–434.
[30]
Polanczyk, M.J.; Carson, B.D.; Subramanian, S.; Afentoulls, M.; Vandenbark, A.A.; Ziegler, F.S.; Offner, H. Estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J. Immunol 2004, 173, 2227–2230.
[31]
Zeisler, H.; Jirecek, S.; Hohlagschwandtner, M.; Kn?fler, M.; Tempfer, C.; Livingston, J.C. Concentrations of estrogens in patients with preeclampsia. Wien. Klin. Wochenschr 2002, 114, 458–461.
[32]
Casart, Y.C.; Tarrazzi, K.; Camejo, M.I. Serum levels of interleukin-6, interleukin-1beta and human chorionic gonadotropin in pre-eclamptic and normal pregnancy. Gynecol. Endocrinol 2007, 23, 300–303.
[33]
Pasare, C.; Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003, 299, 1033–1036.
[34]
Weaver, C.T.; Hatton, R.D. Interplay between the TH17 and TReg cell lineages: A (co-)evolutionary perspective. Nat. Rev. Immunol 2009, 9, 883–889.
[35]
Afzali, B.; Mitchell, P.; Lechler, R.I.; John, S.; Lombardi, G. Translational mini-review series on Th17 cells: Induction of interleukin-17 production by regulatory T cells. Clin. Exp. Immunol 2009, 159, 120–130.
[36]
Acosta-Rodriguez, E.V.; Napolitani, G.; Lanzavecchia, A.; Sallusto, F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol 2007, 8, 942–949.
[37]
Reinhard, G.; Noll, A.; Schlebusch, H.; Mallmann, P.; Ruecker, A.V. Shifts in the TH1/TH2 balance during human pregnancy correlate with apoptotic changes. Biochem. Biophys. Res. Commun 1998, 245, 933–938.
[38]
Fritzschining, B.; Oberle, N.; Eberhardt, N.; Quick, S.; Haas, J.; Wildemann, B.; Krammer, P.H.; Suri-Payer, E. In contrast to effector cells, CD4+CD25+Foxp3+ regulatory T cells are highly susceptible to CD95 ligand—But not to TCR-mediated cell death. J. Immunol 2005, 175, 32–36.
[39]
Rudd, C.E.; Taylor, A.; Schneider, H. CD28 and CTLA4 coreceptor expression and Signal transduction. Immunol. Rev 2009, 229, 12–26.