Influence of “Glow Discharge Plasma” as an External Stimulus on the Self-Assembly, Morphology and Binding Affinity of Gold Nanoparticle-Streptavidin Conjugates
In this study, we investigate the influence of glow discharge plasma (GDP) on the self-assembly, morphology and binding affinity of streptavidin coated gold nanoparticles (Au-NP-SV) and biotinylated antibody (bAb) adsorbed on a highly oriented pyrolytic graphite (HOPG) substrate. Atomic force microscope (AFM) was used to image the pre- and post-GDP treated samples. The analysis of the AFM images showed a considerable change in the aggregation and morphology of Au-NP-conjugates after treatment with GDP. To our knowledge, this is the first report on using GDP to enhance and speed-up the aggregation (sintering) of adsorbed NP biomolecular conjugates. These results show a promising route that could be generalized for other NPs and their conjugates. It can also be considered as an alternative and cheap aggregation method for controlling the binding affinity of biomolecular species on different surfaces with interesting applications.
References
[1]
Whitesides, G.M.; Mathias, J.P.; Seto, C.T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Sci. New Ser 1991, 254, 1312–1319.
Li, Y.; Dong, M.D.; Otzen, D.E.; Yao, Y.H.; Liu, B.; Besenbacher, F.; Mamdouh, W. Influence of tunable external stimuli on the self-assembly of guanosine supramolecular nanostructures studied by Atomic Force Microscope. Langmuir 2009, 25, 13432–13437.
[7]
Williamson, J.R.; Raghuraman, M.K.; Cech, T.R. Monovalent cation-induced structure of telomeric DNA: The G-quartet model. Cell 1989, 59, 871–880.
[8]
Fukushima, K.; Iwahashi, H. 1:1 complex of guanine quartet with alkali metal cations detected by electrospray ionization mass spectrometry. Chem. Commun 2000, 11, 895–896.
[9]
Moriwaki, H. Complexes of cadmium ion with guanine bases detected by electrospray ionization mass spectrometry. J. Mass Spectrom 2003, 38, 321–327.
[10]
Sakamoto, S.; Nakatani, K.; Saito, I.; Yamaguchi, K. Formation and destruction of the guanine quartet in solution observed by cold-spray ionization mass spectrometry. Chem. Commun 2003, 6, 788–789.
[11]
Vairamani, M.; Gross, M.L. G-quadruplex formation of thrombin-binding aptamer detected by electrospray ionization mass spectrometry. J. Am. Chem. Soc 2003, 125, 42–43.
[12]
Davis, J.T. G-Quartets 40 years later: From 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed 2004, 43, 668–698.
[13]
Dong, M.D.; Hovgaard, M.B.; Xu, S.L.; Otzen, D.E.; Besenbacher, F. AFM study of glucagon fibrillation via oligomeric structures resulting in interwoven fibrils. Nanotechnology 2006, 17, 4003–4009.
[14]
Ghosh, S.K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev 2007, 107, 4797–4862.
[15]
Glover, R.D.; Miller, J.M.; Hutchison, J.E. Generation of metal nanoparticles from silver and copper objects: Nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 2011, 5, 8950–8957.
[16]
Wu, K.Y.; Chen, W.Y.; Hwang, J.; Wei, H.K.; Kou, C.S.; Lee, C.-Y.; Liu, Y.-L.; Huang, H.Y. Structure modification of highly ordered pyrolytic graphite by Ar plasma beam scanning at different incident angles. Appl. Phys. A Mater. Sci. Proc 2009, 95, 707–712.
[17]
Zhang, G.; Yang, D.; Sacher, E. X-ray photoelectron spectroscopic analysis of Pt nanoparticles on highly oriented pyrolytic graphite, using symmetric component line shapes. J. Phys. Chem. C 2007, 111, 565–570.
[18]
Vesel, A.; Elersic, K.; Mozetic, M. Immobilization of protein streptavidin to the surface of PMMA polymer. Vacuum 2012, 86, 773–775.
[19]
Wang, Z.J.; Xie, Y.B.; Liu, C.J. Synthesis and characterization of noble metal (Pd, Pt, Au, Ag) nanostructured materials confined in the channels of mesoporous SBA-15. J. Phys. Chem. C 2008, 112, 19818–19824.
[20]
Wang, H.P.; Liu, C.J. Preparation and characterization of SBA-15 supported Pd catalyst for CO oxidation. Appl. Catal. B Environ 2011, 106, 672–680.
[21]
Yang, D.-Q.; Sacher, E. Strongly enhanced interaction between evaporated Pt nanoparticles and functionalized multiwalled carbon nanotubes via plasma surface modifications: Effects of physical and chemical defects. J. Phys. Chem. C 2008, 112, 4075–4082.
[22]
Allen, M.L.; Aronniemi, M.; Mattila, T.; Alastalo, A.; Ojanper?, K.; Suhonen, M.; Sepp?, H. Electrical sintering of nanoparticle structures. Nanotechnology 2008, 19, doi:10.1088/0957-4484/19/17/175201.
[23]
Nakasoa, K.; Shimadaa, M.; Okuyamaa, K.; Deppertb, K. Evaluation of the change in the morphology of gold nanoparticles during sintering. J. Aerosol Sci 2002, 33, 1061–1074.
[24]
Hu, A.; Guo, J.Y.; Alarifi, H.; Patane, G.; Zhou, Y.; Compagnini, G.; Xu, C.X. Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl. Phys. Lett. 2010, 97, 153117:1–153117:3.
[25]
Magdassi, S.; Grouchko, M.; Berezin, O.; Kamyshny, A. Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 2010, 4, 1943–1948.
[26]
Chou, K.-S.; Huang, K.-C.; Lee, H.-H. Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method. Nanotechnology 2005, 16, 779–784.
[27]
Soko?owska, A.; Szaw?owski, J.; Fr?ckowiak, I.; Rudnicki, J.; Boruszewski, P.; Beer, P.; Olszyna, A. Plasma-chemical surface engineering of wood. J. Ach. Mater. Manuf. Eng 2009, 37, 694–697.
[28]
Coutts, M.J.; Cortie, M.B.; Ford, M.J.; McDonagh, A.M. Rapid and controllable sintering of gold nanoparticle inks at room temperature using a chemical agent. J. Phys. Chem. C 2009, 113, 1325–1328.
[29]
Chen, Y.; Palmer, R.E.; Wilcoxon, J.P. Sintering of passivated gold nanoparticles under the electron beam. Langmuir 2006, 22, 2851–2855.
[30]
Green, N.M. The nature of the biotin-binding site. Biochem. J 1963, 89, 599–609.
[31]
Green, N.M. Avidin. Adv. Protein Chem 1975, 29, 85–133.
[32]
Wilchek, M.; Bayer, E.A. The avidin-biotin complex in bioanalytical applications. Anal. Biochem 1988, 171, 1–32.
[33]
Wilchek, M.; Bayer, E.A. Avidin-biotin technology ten years on: Has it lived up to its expectations? Trends Biochem. Sci 1989, 14, 408–412.
[34]
Livnah, O.; Bayer, E.A.; Wilchek, M.; Sussman, J.L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc. Natl. Acad. Sci. USA 1993, 90, 5076–5780.
[35]
Weber, P.C.; Ohlendorf, D.H.; Wendoloski, J.J.; Salemme, F.R. Structural origins of high-affinity biotin binding to streptavidin. Science 1989, 243, 85–88.
[36]
Hermanson, G.T. Bioconjugate Techniques, 1st ed ed.; Academic Press: San Diego, CA, USA, 1996.
[37]
Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil. Trans. R. Soc. A 2010, 368, 1333–1383.
[38]
Dechancie, J.; Houk, K.N. The origins of femtomolar protein-ligand binding: Hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site. J. Am. Chem. Soc 2007, 129, 5419–5429.
[39]
Liang, X.; Wang, Z.J.; Liu, C.J. Size-controlled synthesis of colloidal gold nanoparticles at room temperature under the influence of glow discharge. Nanoscale Res. Lett 2010, 5, 124–129.
[40]
Zou, J.J.; Zhang, Y.P.; Liu, C.J. Reduction of supported noble-metal ions using glow discharge plasma. Langmuir 2006, 22, 11388–11394.