In several neurodegenerative diseases, such as Parkinson, Alzheimer’s, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP), the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126) and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death.
References
[1]
Hartl, F.U.; Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol 2009, 16, 574–581.
[2]
Ross, C.A.; Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med 2004, 10, S10–S17.
[3]
Norrby, E. Prions and protein-folding diseases. J. Int. Med 2011, 270, 1–14.
[4]
Brundin, P.; Melki, R.; Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol 2010, 11, 301–307.
[5]
Cohen, A.S.; Calkins, E. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature 1959, 183, 1202–1203.
[6]
Eanes, E.D.; Glenner, G.G. X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem 1968, 16, 673–677.
[7]
Shewmaker, F.; McGlinchey, R.P.; Wickner, R.B. Structural insights into functional and pathological amyloid. J. Biol. Chem 2011, 286, 16533–16540.
[8]
Tzotzos, S.; Doig, A.J. Amyloidogenic sequences in native protein structures. Protein Sci 2010, 19, 327–348.
[9]
Bucciantini, M.; Giannoni, E.; Chiti, F.; Baroni, F.; Formigli, L.; Zurdo, J.; Taddei, N.; Ramponi, G.; Dobson, C.M.; Stefani, M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002, 416, 507–511.
[10]
Malchiodi-Albedi, F.; Paradisi, S.; Matteucci, A.; Frank, C.; Diociaiuti, M. Amyloid oligomer neurotoxicity, calcium dysregulation, and lipid rafts. Int. J. Alzheimer’s Dis 2011, 2011, doi:10.4061/2011/906964.
[11]
Lambert, M.P.; Barlow, A.K.; Chromy, B.A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T.E.; Rozovsky, I.; Trommer, B.; Viola, K.L.; et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 1998, 95, 6448–6453.
[12]
Kayed, R.; Pensalfini, A.; Margol, L.; Sokolov, Y.; Sarsoza, F.; Head, E.; Hall, J.; Glabe, C. Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J. Biol. Chem 2009, 284, 4230–4237.
[13]
Prusiner, S.B. Shattuck lecture--neurodegenerative diseases and prions. N. Engl. J. Med 2001, 344, 1516–1526.
[14]
Aguzzi, A. Prion diseases of humans and farm animals: Epidemiology, genetics, and pathogenesis. J. Neurochem 2006, 97, 1726–1739.
Caughey, B.W.; Dong, A.; Bhat, K.S.; Ernst, D.; Hayes, S.F.; Caughey, W.S. Secondary structure analysis of the scrapie-associated protein PrP 27–30 in water by infrared spectroscopy. Biochemistry 1991, 30, 7672–7680.
[17]
Abid, K.; Soto, C. The intriguing prion disorders. Cell Mol. Life Sci 2006, 63, 2342–2351.
Aguzzi, A.; Sigurdson, C.; Heikenwaelder, M. Molecular mechanisms of prion pathogenesis. Annu. Rev. Pathol 2008, 3, 11–40.
[24]
Brown, P.; Gibbs, C.J., Jr; Rodgers-Johnson, P.; Asher, D.M.; Sulima, M.P.; Bacote, A.; Goldfarb, L.G.; Gajdusek, D.C. Human spongiform encephalopathy: The National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann. Neurol 1994, 35, 513–529.
[25]
Collinge, J. Human prion diseases and bovine spongiform encephalopathy (BSE). Hum. Mol. Genet 1997, 6, 1699–1705.
Forloni, G.; Angeretti, N.; Chiesa, R.; Monzani, E.; Salmona, M.; Bugiani, O.; Tagliavini, F. Neurotoxicity of a prion protein fragment. Nature 1993, 362, 543–546.
[28]
Florio, T.; Grimaldi, M.; Scorziello, A.; Salmona, M.; Bugiani, O.; Tagliavini, F.; Forloni, G.; Schettini, G. Intracellular calcium rise through L-type calcium channels, as molecular mechanism for prion protein fragment 106–126-induced astroglial proliferation. Biochem. Biophys. Res. Commun 1996, 228, 397–405.
[29]
Baskakov, I.V.; Legname, G.; Baldwin, M.A.; Prusiner, S.B.; Cohen, F.E. Pathway complexity of prion protein assembly into amyloid. J. Biol. Chem 2002, 277, 21140–21148.
[30]
Baskakov, I.V.; Legname, G.; Gryczynski, Z.; Prusiner, S.B. The peculiar nature of unfolding of the human prion protein. Protein Sci 2004, 13, 586–595.
[31]
Morillas, M.; Vanik, D.L.; Surewicz, W.K. On the mechanism of alpha-helix to beta-sheet transition in the recombinant prion protein. Biochemistry 2001, 40, 6982–6987.
[32]
Swietnicki, W.; Morillas, M.; Chen, S.G.; Gambetti, P.; Surewicz, W.K. Aggregation and fibrillization of the recombinant human prion protein huPrP90-231. Biochemistry 2000, 39, 424–431.
[33]
Swietnicki, W.; Petersen, R.; Gambetti, P.; Surewicz, W.K. pH-dependent stability and conformation of the recombinant human prion protein PrP(90-231). J. Biol. Chem 1997, 272, 27517–27520.
[34]
Corsaro, A.; Paludi, D.; Villa, V.; D’Arrigo, C.; Chiovitti, K.; Thellung, S.; Russo, C.; di Cola, D.; Ballerini, P.; Patrone, E.; et al. Conformation dependent pro-apoptotic activity of the recombinant human prion protein fragment 90–231. Int. J. Immunopathol. Pharmacol 2006, 19, 339–356.
[35]
Thellung, S.; Villa, V.; Corsaro, A.; Arena, S.; Millo, E.; Damonte, G.; Benatti, U.; Tagliavini, F.; Florio, T.; Schettini, G. p38 MAP kinase mediates the cell death induced by PrP106-126 in the SH-SY5Y neuroblastoma cells. Neurobiol. Dis 2002, 9, 69–81.
[36]
Brown, D.R.; Schmidt, B.; Kretzschmar, H.A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 1996, 380, 345–347.
[37]
Jobling, M.F.; Stewart, L.R.; White, A.R.; McLean, C.; Friedhuber, A.; Maher, F.; Beyreuther, K.; Masters, C.L.; Barrow, C.J.; Collins, S.J.; et al. The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106–126. J. Neurochem 1999, 73, 1557–1565.
[38]
O’Donovan, C.N.; Tobin, D.; Cotter, T.G. Prion protein fragment PrP-(106–126) induces apoptosis via mitochondrial disruption in human neuronal SH-SY5Y cells. J. Biol. Chem 2001, 276, 43516–43523.
[39]
Rymer, D.L.; Good, T.A. The role of prion peptide structure and aggregation in toxicity and membrane binding. J. Neurochem 2000, 75, 2536–2545.
[40]
Corsaro, A.; Thellung, S.; Villa, V.; Principe, D.R.; Paludi, D.; Arena, S.; Millo, E.; Schettini, D.; Damonte, G.; Aceto, A.; et al. Prion protein fragment 106–126 induces a p38 MAP kinase-dependent apoptosis in SH-SY5Y neuroblastoma cells independently from the amyloid fibril formation. Ann. N. Y. Acad. Sci 2003, 1010, 610–622.
[41]
Chabry, J.; Ratsimanohatra, C.; Sponne, I.; Elena, P.P.; Vincent, J.P.; Pillot, T.; Drouet, B.; Pincon-Raymond, M.; Vandekerckhove, J.; Rosseneu, M.; et al. In vivo and in vitro neurotoxicity of the human prion protein (PrP) fragment P118-135 independently of PrP expression. J. Neurosci 2003, 23, 462–469.
[42]
Pillot, T.; Drouet, B.; Pincon-Raymond, M.; Vandekerckhove, J.; Rosseneu, M.; Chambaz, J. A nonfibrillar form of the fusogenic prion protein fragment [118–135] induces apoptotic cell death in rat cortical neurons. J. Neurochem 2000, 75, 2298–2308.
[43]
Bate, C.; Salmona, M.; Diomede, L.; Williams, A. Squalestatin cures prion-infected neurons and protects against prion neurotoxicity. J. Biol. Chem 2004, 279, 14983–14990.
Tagliavini, F.; Prelli, F.; Verga, L.; Giaccone, G.; Sarma, R.; Gorevic, P.; Ghetti, B.; Passerini, F.; Ghibaudi, E.; Forloni, G.; et al. Synthetic peptides homologous to prion protein residues 106–147 form amyloid-like fibrils in vitro. Proc. Natl. Acad. Sci. USA 1993, 90, 9678–9682.
[46]
De Gioia, L.; Selvaggini, C.; Ghibaudi, E.; Diomede, L.; Bugiani, O.; Forloni, G.; Tagliavini, F.; Salmona, M. Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106–126 of the prion protein. J. Biol. Chem 1994, 269, 7859–7862.
[47]
Selvaggini, C.; de Gioia, L.; Cantu, L.; Ghibaudi, E.; Diomede, L.; Passerini, F.; Forloni, G.; Bugiani, O.; Tagliavini, F.; Salmona, M. Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106–126 of the prion protein. Biochem. Biophys. Res. Commun 1993, 194, 1380–1386.
[48]
Florio, T.; Paludi, D.; Villa, V.; Principe, D.R.; Corsaro, A.; Millo, E.; Damonte, G.; D’Arrigo, C.; Russo, C.; Schettini, G.; et al. Contribution of two conserved glycine residues to fibrillogenesis of the 106–126 prion protein fragment. Evidence that a soluble variant of the 106–126 peptide is neurotoxic. J. Neurochem 2003, 85, 62–72.
[49]
Tagliavini, F.; Prelli, F.; Porro, M.; Rossi, G.; Giaccone, G.; Farlow, M.R.; Dlouhy, S.R.; Ghetti, B.; Bugiani, O.; Frangione, B. Amyloid fibrils in Gerstmann-Straussler-Scheinker disease (Indiana and Swedish kindreds) express only PrP peptides encoded by the mutant allele. Cell 1994, 79, 695–703.
[50]
Thellung, S.; Florio, T.; Corsaro, A.; Arena, S.; Merlino, M.; Salmona, M.; Tagliavini, F.; Bugiani, O.; Forloni, G.; Schettini, G. Intracellular mechanisms mediating the neuronal death and astrogliosis induced by the prion protein fragment 106–126. Int. J. Dev. Neurosci 2000, 18, 481–492.
[51]
Thellung, S.; Florio, T.; Villa, V.; Corsaro, A.; Arena, S.; Amico, C.; Robello, M.; Salmona, M.; Forloni, G.; Bugiani, O.; et al. Apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in rat cerebellar granule cells treated with the prion protein fragment 106–126. Neurobiol. Dis 2000, 7, 299–309.
[52]
Giese, A.; Brown, D.R.; Groschup, M.H.; Feldmann, C.; Haist, I.; Kretzschmar, H.A. Role of microglia in neuronal cell death in prion disease. Brain Pathol 1998, 8, 449–457.
[53]
Hafiz, F.B.; Brown, D.R. A model for the mechanism of astrogliosis in prion disease. Mol. Cell Neurosci 2000, 16, 221–232.
[54]
McHattie, S.J.; Brown, D.R.; Bird, M.M. Cellular uptake of the prion protein fragment PrP106-126 in vitro. J. Neurocytol 1999, 28, 149–159.
[55]
Salmona, M.; Malesani, P.; de Gioia, L.; Gorla, S.; Bruschi, M.; Molinari, A.; Della Vedova, F.; Pedrotti, B.; Marrari, M.A.; Awan, T.; et al. Molecular determinants of the physicochemical properties of a critical prion protein region comprising residues 106–126. Biochem. J 1999, 342, 207–214.
[56]
Walsh, P.; Neudecker, P.; Sharpe, S. Structural properties and dynamic behavior of nonfibrillar oligomers formed by PrP(106–126). J. Am. Chem. Soc 2010, 132, 7684–7695.
[57]
Jackson, G.S.; Hosszu, L.; Power, A.; Hill, A.F.; Kenney, J.; Saibil, H.; Craven, C.; Waltho, J.P.; Clarke, A.R; Collinge, J. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 1999, 283, 1935–1937.
[58]
Hornemann, S.; Schorn, C.; Wuthrich, K. NMR structure of the bovine prion protein isolated from healthy calf brains. EMBO Rep 2004, 5, 1159–1164.
[59]
Corsaro, A.; Thellung, S.; Chiovitti, K.; Villa, V.; Simi, A.; Raggi, F.; Paludi, D.; Russo, C.; Aceto, A.; Florio, T. Dual modulation of ERK1/2 and p38 MAP kinase activities induced by minocycline reverses the neurotoxic effects of the prion protein fragment 90–231. Neurotox. Res 2009, 15, 138–154.
[60]
Fioriti, L.; Angeretti, N.; Colombo, L.; De Luigi, A.; Colombo, A; Manzoni, C.; Morbin, M.; Tagliavini, F.; Salmona, M.; Chiesa, R.; et al. Neurotoxic and gliotrophic activity of a synthetic peptide homologous to GSS disease amyloid protein. J. Neurosci 2007, 27, 1576–1583.
[61]
Thellung, S.; Corsaro, A.; Villa, V.; Simi, A.; Vella, S.; Pagano, A.; Florio, T. Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction. Cell Death Dis 2011, 2, e138.
[62]
Thellung, S.; Corsaro, A.; Villa, V.; Venezia, V.; Nizzari, M.; Bisaglia, M.; Russo, C.; Schettini, G.; Aceto, A.; Florio, T. Amino-terminally truncated prion protein PrP90-231 induces microglial activation in vitro. Ann. N. Y. Acad. Sci 2007, 1096, 258–270.
[63]
Thellung, S.; Villa, V.; Corsaro, A.; Pellistri, F.; Venezia, V.; Russo, C.; Aceto, A.; Robello, M.; Florio, T. ERK1/2 and p38 MAP kinases control prion protein fragment 90-231-induced astrocyte proliferation and microglia activation. Glia 2007, 55, 1469–1485.
[64]
Villa, V.; Tonelli, M.; Thellung, S.; Corsaro, A.; Tasso, B.; Novelli, F.; Canu, C.; Pino, A.; Chiovitti, K.; Paludi, D.; et al. Efficacy of novel acridine derivatives in the inhibition of hPrP90-231 prion protein fragment toxicity. Neurotox. Res 2011, 19, 556–574.
[65]
Zou, W.Q.; Capellari, S.; Parchi, P.; Sy, M.S.; Gambetti, P.; Chen, S.G. Identification of novel proteinase K-resistant C-terminal fragments of PrP in Creutzfeldt-Jakob disease. J. Biol. Chem 2003, 278, 40429–40436.
[66]
Mange, A.; Beranger, F.; Peoc’h, K.; Onodera, T.; Frobert, Y.; Lehmann, S. Alpha- and beta- cleavages of the amino-terminus of the cellular prion protein. Biol. Cell Auspices Eur. Cell Biol. Org 2004, 96, 125–132.
[67]
Lewis, V.; Hill, A.F.; Haigh, C.L.; Klug, G.M.; Masters, C.L.; Lawson, V.A.; Collins, S.J. Increased proportions of C1 truncated prion protein protect against cellular M1000 prion infection. J. Neuropathol. Exp. Neurol 2009, 68, 1125–1135.
[68]
Dron, M.; Moudjou, M.; Chapuis, J.; Salamat, M.K.; Bernard, J.; Cronier, S.; Langevin, C.; Laude, H. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent. J. Biol. Chem 2010, 285, 10252–10264.
[69]
Leffers, K.W.; Schell, J.; Jansen, K.; Lucassen, R.; Kaimann, T.; Nagel-Steger, L.; Tatzelt, J.; Riesner, D. The structural transition of the prion protein into its pathogenic conformation is induced by unmasking hydrophobic sites. J. Mol. Biol 2004, 344, 839–853.
[70]
Riek, R.; Hornemann, S.; Wider, G.; Billeter, M.; Glockshuber, R.; Wuthrich, K. NMR structure of the mouse prion protein domain PrP(121–321). Nature 1996, 382, 180–182.
[71]
Zahn, R.; Liu, A.; Luhrs, T.; Riek, R.; von Schroetter, C.; Lopez Garcia, F.; Billeter, M.; Calzolai, L.; Wider, G.; Wuthrich, K. NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA 2000, 97, 145–150.
[72]
Peretz, D.; Williamson, R.A.; Matsunaga, Y.; Serban, H.; Pinilla, C.; Bastidas, R.B.; Rozenshteyn, R.; James, T.L.; Houghten, R.A.; Cohen, F.E.; et al. A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J. Mol. Biol 1997, 273, 614–622.
[73]
Salmona, M.; Morbin, M.; Massignan, T.; Colombo, L.; Mazzoleni, G.; Capobianco, R.; Diomede, L.; Thaler, F.; Mollica, L.; Musco, G.; et al. Structural properties of Gerstmann-Straussler-Scheinker disease amyloid protein. J. Biol. Chem 2003, 278, 48146–48153.
[74]
Holscher, C.; Delius, H.; Burkle, A. Overexpression of nonconvertible PrPc delta114-121 in scrapie-infected mouse neuroblastoma cells leads to trans-dominant inhibition of wild-type PrP(Sc) accumulation. J. Virol 1998, 72, 1153–1159.
[75]
Norstrom, E.M.; Mastrianni, J.A. The AGAAAAGA palindrome in PrP is required to generate a productive PrPSc-PrPC complex that leads to prion propagation. J. Biol. Chem 2005, 280, 27236–27243.
[76]
Gallo, M.; Paludi, D.; Cicero, D.O.; Chiovitti, K.; Millo, E.; Salis, A.; Damonte, G.; Corsaro, A.; Thellung, S.; Schettini, G.; et al. Identification of a conserved N-capping box important for the structural autonomy of the prion alpha 3-helix: The disease associated D202N mutation destabilizes the helical conformation. Int. J. Immunopathol. Pharmacol 2005, 18, 95–112.
[77]
Baskakov, I.V.; Legname, G.; Prusiner, S.B.; Cohen, F.E. Folding of prion protein to its native alpha-helical conformation is under kinetic control. J. Biol. Chem 2001, 276, 19687–19690.
[78]
Bocharova, O.V.; Breydo, L.; Parfenov, A.S.; Salnikov, V.V.; Baskakov, I.V. In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc). J. Mol. Biol 2005, 346, 645–659.
[79]
Torrent, J.; Alvarez-Martinez, M.T.; Harricane, M.C.; Heitz, F.; Liautard, J.P.; Balny, C.; Lange, R. High pressure induces scrapie-like prion protein misfolding and amyloid fibril formation. Biochemistry 2004, 43, 7162–7170.
Corsaro, A.; Thellung, S.; Russo, C.; Villa, V.; Arena, S.; D’Adamo, M.C.; Paludi, D.; Rossi Principe, D.; Damonte, G.; Benatti, U.; et al. Expression in E. coli and purification of recombinant fragments of wild type and mutant human prion protein. Neurochem. Int 2002, 41, 55–63.
[82]
Villa, V.; Corsaro, A.; Thellung, S.; Paludi, D.; Chiovitti, K.; Venezia, V.; Nizzari, M.; Russo, C.; Schettini, G.; Aceto, A.; Florio, T. Characterization of the proapoptotic intracellular mechanisms induced by a toxic conformer of the recombinant human prion protein fragment 90–231. Ann. N. Y. Acad. Sci 2006, 1090, 276–291.
[83]
Paulis, D.; Maras, B.; Schinina, M.E.; di Francesco, L.; Principe, S.; Galeno, R.; Abdel-Haq, H.; Cardone, F.; Florio, T.; Pocchiari, M.; et al. The pathological prion protein forms ionic conductance in lipid bilayer. Neurochem. Int 2011, 59, 168–174.
[84]
Corsaro, A.; Thellung, S.; Villa, V.; Nizzari, M.; Aceto, A.; Florio, T. Recombinant human prion protein fragment 90–231, a useful model to study prion neurotoxicity. Omics J. Integr. Biol 2012, 16, 50–59.
[85]
May, B.C.; Govaerts, C.; Prusiner, S.B.; Cohen, F.E. Prions: So many fibers, so little infectivity. Trends Biochem. Sci 2004, 29, 162–165.
Wang, F.; Wang, X.; Yuan, C.G.; Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 2010, 327, 1132–1135.
[88]
Caughey, B.; Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci 2003, 26, 267–298.
[89]
Stefani, M.; Dobson, C.M. Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. (Berl) 2003, 81, 678–699.
[90]
Reixach, N.; Deechongkit, S.; Jiang, X.; Kelly, J.W.; Buxbaum, J.N. Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc. Natl. Acad. Sci. USA 2004, 101, 2817–2822.
[91]
Silveira, J.R.; Raymond, G.J.; Hughson, A.G.; Race, R.E.; Sim, V.L.; Hayes, S.F.; Caughey, B. The most infectious prion protein particles. Nature 2005, 437, 257–261.
[92]
Tzaban, S.; Friedlander, G.; Schonberger, O.; Horonchik, L.; Yedidia, Y.; Shaked, G.; Gabizon, R.; Taraboulos, A. Protease-sensitive scrapie prion protein in aggregates of heterogeneous sizes. Biochemistry 2002, 41, 12868–12875.
[93]
Bocharova, O.V.; Breydo, L.; Salnikov, V.V.; Gill, A.C.; Baskakov, I.V. Synthetic prions generated in vitro are similar to a newly identified subpopulation of PrPSc from sporadic Creutzfeldt-Jakob Disease. Protein Sci 2005, 14, 1222–1232.
[94]
Rezaei, H.; Eghiaian, F.; Perez, J.; Doublet, B.; Choiset, Y.; Haertle, T.; Grosclaude, J. Sequential generation of two structurally distinct ovine prion protein soluble oligomers displaying different biochemical reactivities. J. Mol. Biol 2005, 347, 665–679.
[95]
Chiovitti, K.; Corsaro, A.; Thellung, S.; Villa, V.; Paludi, D.; D’Arrigo, C.; Russo, C.; Perico, A.; Ianieri, A.; di Cola, D.; et al. Intracellular accumulation of a mild-denatured monomer of the human PrP fragment 90–231, as possible mechanism of its neurotoxic effects. J. Neurochem 2007, 103, 2597–2609.
[96]
Simoneau, S.; Rezaei, H.; Sales, N.; Kaiser-Schulz, G.; Lefebvre-Roque, M.; Vidal, C.; Fournier, J.G.; Comte, J.; Wopfner, F.; Grosclaude, J.; et al. In vitro and in vivo neurotoxicity of prion protein oligomers. PLoS Pathog 2007, 3, e125.
[97]
Paludi, D.; Thellung, S.; Chiovitti, K.; Corsaro, A.; Villa, V.; Russo, C.; Ianieri, A.; Bertsch, U.; Kretzschmar, H.A.; Aceto, A.; et al. Different structural stability and toxicity of PrP(ARR) and PrP(ARQ) sheep prion protein variants. J. Neurochem 2007, 103, 2291–2300.
[98]
Baskakov, I.V.; Bocharova, O.V. In vitro conversion of mammalian prion protein into amyloid fibrils displays unusual features. Biochemistry 2005, 44, 2339–2348.
[99]
Frankenfield, K.N.; Powers, E.T.; Kelly, J.W. Influence of the N-terminal domain on the aggregation properties of the prion protein. Protein Sci 2005, 14, 2154–2166.
[100]
Zhou, M.; Ottenberg, G.; Sferrazza, G.F.; Lasmezas, C.I. Highly neurotoxic monomeric alpha-helical prion protein. Proc. Natl. Acad. Sci. USA 2012, 109, 3113–3118.
[101]
Lawson, V.A.; Priola, S.A.; Wehrly, K.; Chesebro, B. N-terminal truncation of prion protein affects both formation and conformation of abnormal protease-resistant prion protein generated in vitro. J. Biol. Chem 2001, 276, 35265–35271.
[102]
Lawson, V.A.; Priola, S.A.; Meade-White, K.; Lawson, M.; Chesebro, B. Flexible N-terminal region of prion protein influences conformation of protease-resistant prion protein isoforms associated with cross-species scrapie infection in vivo and in vitro. J. Biol. Chem 2004, 279, 13689–13695.
[103]
Goldstein, R.F.; Stryer, L. Cooperative polymerization reactions. Analytical approximations, numerical examples, and experimental strategy. Biophys. J 1986, 50, 583–599.
[104]
Harper, J.D.; Lieber, C.M.; Lansbury, P.T., Jr. Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-beta protein. Chem. Biol 1997, 4, 951–959.
[105]
Ferrone, F. Analysis of protein aggregation kinetics. Methods Enzymol 1999, 309, 256–274.
[106]
Jarrett, J.T.; Lansbury, P.T., Jr. Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 1993, 73, 1055–1058.
[107]
Hesketh, S.; Thompsett, A.R.; Brown, D.R. Prion protein polymerisation triggered by manganese-generated prion protein seeds. J. Neurochem 2012, 120, 177–189.
[108]
Collinge, J. Prion diseases of humans and animals: Their causes and molecular basis. Annu. Rev. Neurosci 2001, 24, 519–550.
[109]
Rosenmann, H.; Talmor, G.; Halimi, M.; Yanai, A.; Gabizon, R.; Meiner, Z. Prion protein with an E200K mutation displays properties similar to those of the cellular isoform PrP(C). J. Neurochem 2001, 76, 1654–1662.
[110]
Zhang, Y.; Swietnicki, W.; Zagorski, M.G.; Surewicz, W.K.; Sonnichsen, F.D. Solution structure of the E200K variant of human prion protein. Implications for the mechanism of pathogenesis in familial prion diseases. J. Biol. Chem 2000, 275, 33650–33654.
[111]
Hasegawa, K.; Mohri, S.; Yokoyama, T. Fragment molecular orbital calculations reveal that the E200K mutation markedly alters local structural stability in the human prion protein. Prion 2010, 4, 38–44.
[112]
Van der Kamp, M.W.; Daggett, V. The consequences of pathogenic mutations to the human prion protein. Protein Eng. Des. Sel 2009, 22, 461–468.
[113]
Yin, S.; Pham, N.; Yu, S.; Li, C.; Wong, P.; Chang, B.; Kang, S.C.; Biasini, E.; Tien, P.; Harris, D.A.; et al. Human prion proteins with pathogenic mutations share common conformational changes resulting in enhanced binding to glycosaminoglycans. Proc. Natl. Acad. Sci. USA 2007, 104, 7546–7551.
[114]
Corsaro, A.; Thellung, S.; Bucciarelli, T.; Scotti, L.; Chiovitti, K.; Villa, V.; D’Arrigo, C.; Aceto, A.; Florio, T. High hydrophobic amino acid exposure is responsible of the neurotoxic effects induced by E200K or D202N disease-related mutations of the human prion protein. Int. J. Biochem. Cell Biol 2011, 43, 372–382.
[115]
Capellari, S.; Parchi, P.; Russo, C.M.; Sanford, J.; Sy, M.S.; Gambetti, P.; Petersen, R.B. Effect of the E200K mutation on prion protein metabolism. Comparative study of a cell model and human brain. Am. J. Pathol 2000, 157, 613–622.
[116]
Williams, E.S.; Young, S. Spongiform encephalopathies in Cervidae. Rev. Sci. Tech. (International Office of Epizootics) 1992, 11, 551–567.
Purdey, M. Elevated silver, barium and strontium in antlers, vegetation and soils sourced from CWD cluster areas: Do Ag/Ba/Sr piezoelectric crystals represent the transmissible pathogenic agent in TSEs? Med. Hypotheses 2004, 63, 211–225.
[119]
Ragnarsdottir, K.V.; Hawkins, D.P. Bioavailable copper and manganese in soils from Iceland and their relationship with scrapie occurrence in sheep. J. Geochem. Explor 2006, 88, 228–234.
[120]
Saunders, S.E.; Bartelt-Hunt, S.L.; Bartz, J.C. Prions in the environment: Occurrence, fate and mitigation. Prion 2008, 2, 162–169.
[121]
Gough, K.C.; Maddison, B.C. Prion transmission: Prion excretion and occurrence in the environment. Prion 2010, 4, 275–282.
[122]
Brown, P.; Gajdusek, D.C. Survival of scrapie virus after 3 years’ interment. Lancet 1991, 337, 269–270.
[123]
Saunders, S.E.; Yuan, Q.; Bartz, J.C.; Bartelt-Hunt, S. Effects of solution chemistry and aging time on prion protein adsorption and replication of soil-bound prions. PLoS One 2011, 6, e18752.
[124]
Saunders, S.E.; Shikiya, R.A.; Langenfeld, K.; Bartelt-Hunt, S.L.; Bartz, J.C. Replication efficiency of soil-bound prions varies with soil type. J. Virol 2011, 85, 5476–5482.
[125]
Seidel, B.; Thomzig, A.; Buschmann, A.; Groschup, M.H.; Peters, R.; Beekes, M.; Terytze, K. Scrapie Agent (Strain 263K) can transmit disease via the oral route after persistence in soil over years. PLoS One 2007, 2, e435.
[126]
Johnson, C.J.; Pedersen, J.A.; Chappell, R.J.; McKenzie, D.; Aiken, J.M. Oral transmissibility of prion disease is enhanced by binding to soil particles. PLoS Pathog 2007, 3, e93.
[127]
Gonzalez-Romero, D.; Barria, M.A.; Leon, P.; Morales, R.; Soto, C. Detection of infectious prions in urine. FEBS Lett 2008, 582, 3161–3166.
[128]
Corsaro, A.; Anselmi, C.; Polano, M.; Aceto, A.; Florio, T.; de Nobili, M. The interaction of humic substances with the human prion protein fragment 90–231 affects its protease K resistance and cell internalization. J. Biol. Regul. Homeost. Agents 2010, 24, 27–39.
[129]
Polano, M.; Anselmi, C.; Leita, L.; Negro, A.; de Nobili, M. Organic polyanions act as complexants of prion protein in soil. Biochem. Biophys. Res. Commun 2008, 367, 323–329.