全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Flexible and Versatile as a Chameleon—Sophisticated Functions of microRNA-199a

DOI: 10.3390/ijms13078449

Keywords: microRNA, targets, miRNA-199a

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although widely studied in the past decade, our knowledge of the functional role of microRNAs (miRNAs) remains limited. Among the many miRNAs identified in humans, we focus on miR-199a due to its varied and important functions in diverse models and systems. Its expression is finely regulated by promoter methylation and direct binding of transcription factors such as TWIST1. During tumorigenesis, depending on the nature of the cancer, miR-199a, especially its -3p mature form, may act as either a potential tumor suppressor or an oncogene. Its 5p mature form has been shown to protect cardiomyocytes from hypoxic damage via its action on HIF1α. It also has a functional role in stem cell differentiation, embryo development, hepatitis, liver fibrosis, etc. Though it has varied biological activities, its regulation has not been reviewed. The varied and protean functions of miR-199a suggest that efforts to generalize the action of a miRNA are problematic. This review provides a comprehensive survey of the literature on miR-199a as an example of the complexity of miRNA biology and suggests future directions for miRNA research.

References

[1]  Lagos-Quintana, M.; Rauhut, R.; Meyer, J.; Borkhardt, A.; Tuschl, T. New micrornas from mouse and human. RNA 2003, 9, 175–179.
[2]  Kozomara, A.; Griffiths-Jones, S. MiRbase: Integrating microrna annotation and deep-sequencing data. Nucleic Acids Res 2011, 39, D152–D157.
[3]  Krichevsky, A.M.; Gabriely, G. MiR-21: A small multi-faceted rna. J. Cell. Mol. Med 2009, 13, 39–53.
[4]  Lim, L.P.; Glasner, M.E.; Yekta, S.; Burge, C.B.; Bartel, D.P. Vertebrate microrna genes. Science 2003, 299, 1540.
[5]  Landgraf, P.; Rusu, M.; Sheridan, R.; Sewer, A.; Iovino, N.; Aravin, A.; Pfeffer, S.; Rice, A.; Kamphorst, A.O.; Landthaler, M.; et al. A mammalian microrna expression atlas based on small rna library sequencing. Cell 2007, 129, 1401–1414.
[6]  Lee, Y.B.; Bantounas, I.; Lee, D.Y.; Phylactou, L.; Caldwell, M.A.; Uney, J.B. Twist-1 regulates the miR-199a/214 cluster during development. Nucleic Acids Res 2009, 37, 123–128.
[7]  Yin, G.; Chen, R.; Alvero, A.B.; Fu, H.H.; Holmberg, J.; Glackin, C.; Rutherford, T.; Mor, G. Twisting stemness, inflammation and proliferation of epithelial ovarian cancer cells through miR199a2/214. Oncogene 2010, 29, 3545–3553.
[8]  Watanabe, T.; Sato, T.; Amano, T.; Kawamura, Y.; Kawamura, N.; Kawaguchi, H.; Yamashita, N.; Kurihara, H.; Nakaoka, T. Dnm3os, a non-coding rna, is required for normal growth and skeletal development in mice. Dev. Dyn 2008, 237, 3738–3748.
[9]  Kim, S.; Lee, U.J.; Kim, M.N.; Lee, E.J.; Kim, J.Y.; Lee, M.Y.; Choung, S.; Kim, Y.J.; Choi, Y.C. Microrna miR-199a* regulates the met proto-oncogene and the downstream extracellular signal-regulated kinase 2 (erk2). J. Biol. Chem 2008, 283, 18158–18166.
[10]  Fujita, S.; Iba, H. Putative promoter regions of miRna genes involved in evolutionarily conserved regulatory systems among vertebrates. Bioinformatics 2008, 24, 303–308.
[11]  Cheung, H.H.; Lee, T.L.; Davis, A.J.; Taft, D.H.; Rennert, O.M.; Chan, W.Y. Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding rnas in human testicular cancer. Br. J. Cancer 2010, 102, 419–427.
[12]  Mudduluru, G.; Ceppi, P.; Kumarswamy, R.; Scagliotti, G.V.; Papotti, M.; Allgayer, H. Regulation of axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene 2011, 30, 2888–2899.
[13]  Sakurai, K.; Furukawa, C.; Haraguchi, T.; Inada, K.; Shiogama, K.; Tagawa, T.; Fujita, S.; Ueno, Y.; Ogata, A.; Ito, M.; et al. Micrornas miR-199a-5p and -3p target the brm subunit of swi/snf to generate a double-negative feedback loop in a variety of human cancers. Cancer Res 2011, 71, 1680–1689.
[14]  Loebel, D.A.; Tsoi, B.; Wong, N.; Tam, P.P. A conserved noncoding intronic transcript at the mouse dnm3 locus. Genomics 2005, 85, 782–789.
[15]  Wienholds, E.; Kloosterman, W.P.; Miska, E.; Alvarez-Saavedra, E.; Berezikov, E.; de Bruijn, E.; Horvitz, H.R.; Kauppinen, S.; Plasterk, R.H. Microrna expression in zebrafish embryonic development. Science 2005, 309, 310–311.
[16]  Yi, R.; O’Carroll, D.; Pasolli, H.A.; Zhang, Z.; Dietrich, F.S.; Tarakhovsky, A.; Fuchs, E. Morphogenesis in skin is governed by discrete sets of differentially expressed micrornas. Nat. Genet 2006, 38, 356–362.
[17]  van Rooij, E.; Sutherland, L.B.; Liu, N.; Williams, A.H.; McAnally, J.; Gerard, R.D.; Richardson, J.A.; Olson, E.N. A signature pattern of stress-responsive micrornas that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA 2006, 103, 18255–18260.
[18]  Fischer, L.; Hummel, M.; Korfel, A.; Lenze, D.; Joehrens, K.; Thiel, E. Differential micro-rna expression in primary cns and nodal diffuse large b-cell lymphomas. Neuro-Oncology 2011, 13, 1090–1098.
[19]  Santhakumar, D.; Forster, T.; Laqtom, N.N.; Fragkoudis, R.; Dickinson, P.; Abreu-Goodger, C.; Manakov, S.A.; Choudhury, N.R.; Griffiths, S.J.; Vermeulen, A.; et al. Combined agonist-antagonist genome-wide functional screening identifies broadly active antiviral micrornas. Proc. Natl. Acad. Sci. USA 2010, 107, 13830–13835.
[20]  Hou, J.; Lin, L.; Zhou, W.; Wang, Z.; Ding, G.; Dong, Q.; Qin, L.; Wu, X.; Zheng, Y.; Yang, Y.; et al. Identification of miRnomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011, 19, 232–243.
[21]  Lee, C.G.; Kim, Y.W.; Kim, E.H.; Meng, Z.; Huang, W.; Hwang, S.J.; Kim, S.G. Farnesoid X receptor protects hepatocytes from injury by repressing miR-199a-3p, which increases levels of lkb1. Gastroenterology 2012, 142.
[22]  Rane, S.; He, M.; Sayed, D.; Yan, L.; Vatner, D.; Abdellatif, M. An antagonism between the akt and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cell. Signal 2010, 22, 1054–1062.
[23]  Sayed, D.; Abdellatif, M. Akt-ing via microrna. Cell Cycle 2010, 9, 3213–3217.
[24]  Haghikia, A.; Missol-Kolka, E.; Tsikas, D.; Venturini, L.; Brundiers, S.; Castoldi, M.; Muckenthaler, M.U.; Eder, M.; Stapel, B.; Thum, T.; et al. Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: A key role for ubiquitin-conjugating enzymes. Eur. Heart J 2011, 32, 1287–1297.
[25]  Lin, E.A.; Kong, L.; Bai, X.H.; Luan, Y.; Liu, C.J. MiR-199a, a bone morphogenic protein 2-responsive microrna, regulates chondrogenesis via direct targeting to smad1. J. Biol. Chem 2009, 284, 11326–11335.
[26]  Tsukigi, M.; Bilim, V.; Yuuki, K.; Ugolkov, A.; Naito, S.; Nagaoka, A.; Kato, T.; Motoyama, T.; Tomita, Y. Re-expression of miR-199a suppresses renal cancer cell proliferation and survival by targeting gsk-3beta. Cancer Lett 2012, 315, 189–197.
[27]  Song, G.; Zeng, H.; Li, J.; Xiao, L.; He, Y.; Tang, Y.; Li, Y. MiR-199a regulates the tumor suppressor mitogen-activated protein kinase kinase kinase 11 in gastric cancer. Biol. Pharm. Bull 2010, 33, 1822–1827.
[28]  Brenner, B.; Hoshen, M.B.; Purim, O.; David, M.B.; Ashkenazi, K.; Marshak, G.; Kundel, Y.; Brenner, R.; Morgenstern, S.; Halpern, M.; et al. Micrornas as a potential prognostic factor in gastric cancer. World J. Gastroenterol 2011, 17, 3976–3985.
[29]  Ueda, T.; Volinia, S.; Okumura, H.; Shimizu, M.; Taccioli, C.; Rossi, S.; Alder, H.; Liu, C.G.; Oue, N.; Yasui, W.; et al. Relation between microrna expression and progression and prognosis of gastric cancer: A microrna expression analysis. Lancet Oncol 2010, 11, 136–146.
[30]  Shigehara, K.; Yokomuro, S.; Ishibashi, O.; Mizuguchi, Y.; Arima, Y.; Kawahigashi, Y.; Kanda, T.; Akagi, I.; Tajiri, T.; Yoshida, H.; et al. Real-time pcr-based analysis of the human bile micrornaome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer. PLoS One 2011, 6, e23584.
[31]  Jiang, J.; Gusev, Y.; Aderca, I.; Mettler, T.A.; Nagorney, D.M.; Brackett, D.J.; Roberts, L.R.; Schmittgen, T.D. Association of microrna expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin. Cancer Res 2008, 14, 419–427.
[32]  Jia, X.Q.; Cheng, H.Q.; Qian, X.; Bian, C.X.; Shi, Z.M.; Zhang, J.P.; Jiang, B.H.; Feng, Z.Q. Lentivirus-mediated overexpression of microrna-199a inhibits cell proliferation of human hepatocellular carcinoma. Cell Biochem. Biophys 2012, 62, 237–244.
[33]  Henry, J.C.; Park, J.K.; Jiang, J.; Kim, J.H.; Nagorney, D.M.; Roberts, L.R.; Banerjee, S.; Schmittgen, T.D. MiR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines. Biochem. Biophys. Res. Commun 2010, 403, 120–125.
[34]  Shen, Q.; Cicinnati, V.R.; Zhang, X.; Iacob, S.; Weber, F.; Sotiropoulos, G.C.; Radtke, A.; Lu, M.; Paul, A.; Gerken, G.; Beckebaum, S. Role of microrna-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol. Cancer 2010, 9, 227.
[35]  Fornari, F.; Milazzo, M.; Chieco, P.; Negrini, M.; Calin, G.A.; Grazi, G.L.; Pollutri, D.; Croce, C.M.; Bolondi, L.; Gramantieri, L. MiR-199a-3p regulates mtor and c-met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2010, 70, 5184–5193.
[36]  Qu, K.Z.; Zhang, K.; Li, H.; Afdhal, N.H.; Albitar, M. Circulating micrornas as biomarkers for hepatocellular carcinoma. J. Clin. Gastroenterol 2011, 45, 355–360.
[37]  Magrelli, A.; Azzalin, G.; Salvatore, M.; Viganotti, M.; Tosto, F.; Colombo, T.; Devito, R.; Di Masi, A.; Antoccia, A.; Lorenzetti, S.; et al. Altered microrna expression patterns in hepatoblastoma patients. Transl. Oncol 2009, 2, 157–163.
[38]  Duan, Z.; Choy, E.; Harmon, D.; Liu, X.; Susa, M.; Mankin, H.; Hornicek, F. Microrna-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol. Cancer Ther 2011, 10, 1337–1345.
[39]  Feber, A.; Xi, L.; Pennathur, A.; Gooding, W.E.; Bandla, S.; Wu, M.; Luketich, J.D.; Godfrey, T.E.; Litle, V.R. Microrna prognostic signature for nodal metastases and survival in esophageal adenocarcinoma. Ann. Thorac. Surg 2011, 91, 1523–1530.
[40]  Cheung, H.H.; Davis, A.J.; Lee, T.L.; Pang, A.L.; Nagrani, S.; Rennert, O.M.; Chan, W.Y. Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene 2011, 30, 3404–3415.
[41]  Wang, F.; Zheng, Z.; Guo, J.; Ding, X. Correlation and quantitation of microrna aberrant expression in tissues and sera from patients with breast tumor. Gynecol. Oncol 2010, 119, 586–593.
[42]  Ballabio, E.; Mitchell, T.; van Kester, M.S.; Taylor, S.; Dunlop, H.M.; Chi, J.; Tosi, I.; Vermeer, M.H.; Tramonti, D.; Saunders, N.J.; et al. Microrna expression in sezary syndrome: Identification, function, and diagnostic potential. Blood 2010, 116, 1105–1113.
[43]  Iorio, M.V.; Visone, R.; di Leva, G.; Donati, V.; Petrocca, F.; Casalini, P.; Taccioli, C.; Volinia, S.; Liu, C.G.; Alder, H.; et al. Microrna signatures in human ovarian cancer. Cancer Res 2007, 67, 8699–8707.
[44]  Nam, E.J.; Yoon, H.; Kim, S.W.; Kim, H.; Kim, Y.T.; Kim, J.H.; Kim, J.W.; Kim, S. Microrna expression profiles in serous ovarian carcinoma. Clin. Cancer Res 2008, 14, 2690–2695.
[45]  Yang, H.; Kong, W.; He, L.; Zhao, J.J.; O’Donnell, J.D.; Wang, J.; Wenham, R.M.; Coppola, D.; Kruk, P.A.; Nicosia, S.V.; et al. Microrna expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting pten. Cancer Res 2008, 68, 425–433.
[46]  Chen, R.; Alvero, A.B.; Silasi, D.A.; Kelly, M.G.; Fest, S.; Visintin, I.; Leiser, A.; Schwartz, P.E.; Rutherford, T.; Mor, G. Regulation of ikkbeta by miR-199a affects nf-kappab activity in ovarian cancer cells. Oncogene 2008, 27, 4712–4723.
[47]  Jukic, D.M.; Rao, U.N.; Kelly, L.; Skaf, J.S.; Drogowski, L.M.; Kirkwood, J.M.; Panelli, M.C. Microrna profiling analysis of differences between the melanoma of young adults and older adults. J. Transl. Med 2010, 8, 27.
[48]  Worley, L.A.; Long, M.D.; Onken, M.D.; Harbour, J.W. Micrornas associated with metastasis in uveal melanoma identified by multiplexed microarray profiling. Melanoma Res 2008, 18, 184–190.
[49]  Ichimi, T.; Enokida, H.; Okuno, Y.; Kunimoto, R.; Chiyomaru, T.; Kawamoto, K.; Kawahara, K.; Toki, K.; Kawakami, K.; Nishiyama, K.; et al. Identification of novel microrna targets based on microrna signatures in bladder cancer. Int. J. Cancer 2009, 125, 345–352.
[50]  Mascaux, C.; Laes, J.F.; Anthoine, G.; Haller, A.; Ninane, V.; Burny, A.; Sculier, J.P. Evolution of microrna expression during human bronchial squamous carcinogenesis. Eur. Respir. J 2009, 33, 352–359.
[51]  Lee, J.W.; Choi, C.H.; Choi, J.J.; Park, Y.A.; Kim, S.J.; Hwang, S.Y.; Kim, W.Y.; Kim, T.J.; Lee, J.H.; Kim, B.G.; Bae, D.S. Altered microrna expression in cervical carcinomas. Clin. Cancer Res 2008, 14, 2535–2542.
[52]  Garzon, R.; Volinia, S.; Liu, C.G.; Fernandez-Cymering, C.; Palumbo, T.; Pichiorri, F.; Fabbri, M.; Coombes, K.; Alder, H.; Nakamura, T.; et al. Microrna signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008, 111, 3183–3189.
[53]  Zhao, Y.; Xie, P.; Fan, H. Genomic profiling of micrornas and proteomics reveals an early molecular alteration associated with tumorigenesis induced by MC-LR in mice. Environ. Sci. Technol 2012, 46, 34–41.
[54]  Bockmeyer, C.L.; Christgen, M.; Muller, M.; Fischer, S.; Ahrens, P.; Langer, F.; Kreipe, H.; Lehmann, U. Microrna profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res. Treat 2011, 130, 735–745.
[55]  Shatseva, T.; Lee, D.Y.; Deng, Z.; Yang, B.B. Microrna miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J. Cell Sci 2011, 124, 2826–2836.
[56]  Migliore, C.; Petrelli, A.; Ghiso, E.; Corso, S.; Capparuccia, L.; Eramo, A.; Comoglio, P.M.; Giordano, S. Micrornas impair met-mediated invasive growth. Cancer Res 2008, 68, 10128–10136.
[57]  Chen, A.; Luo, M.; Yuan, G.; Yu, J.; Deng, T.; Zhang, L.; Zhou, Y.; Mitchelson, K.; Cheng, J. Complementary analysis of microrna and mrna expression during phorbol 12-myristate 13-acetate (TPA)-induced differentiation of hl-60 cells. Biotechnol. Lett 2008, 30, 2045–2052.
[58]  Kang, S.G.; Lee, W.H.; Lee, Y.H.; Lee, Y.S.; Kim, S.G. Hypoxia-inducible factor-1alpha inhibition by a pyrrolopyrazine metabolite of oltipraz as a consequence of micrornas 199a-5p and 20a induction. Carcinogenesis 2012, 33, 661–669.
[59]  Yu, T.; Wang, X.Y.; Gong, R.G.; Li, A.; Yang, S.; Cao, Y.T.; Wen, Y.M.; Wang, C.M.; Yi, X.Z. The expression profile of micrornas in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in syrian hamster. J. Exp. Clin. Cancer Res 2009, 28, 64.
[60]  Burnside, J.; Ouyang, M.; Anderson, A.; Bernberg, E.; Lu, C.; Meyers, B.C.; Green, P.J.; Markis, M.; Isaacs, G.; Huang, E.; Morgan, R.W. Deep sequencing of chicken micrornas. BMC Genomics 2008, 9, 185.
[61]  Liu, G.; Detloff, M.R.; Miller, K.N.; Santi, L.; Houle, J.D. Exercise modulates micrornas that affect the pten/mtor pathway in rats after spinal cord injury. Exp. Neurol 2012, 233, 447–456.
[62]  Ogawa, T.; Enomoto, M.; Fujii, H.; Sekiya, Y.; Yoshizato, K.; Ikeda, K.; Kawada, N. Microrna-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut 2012. Epub ahead of print.
[63]  Murakami, Y.; Aly, H.H.; Tajima, A.; Inoue, I.; Shimotohno, K. Regulation of the hepatitis c virus genome replication by miR-199a. J. Hepatol 2009, 50, 453–460.
[64]  Zhang, G.L.; Li, Y.X.; Zheng, S.Q.; Liu, M.; Li, X.; Tang, H. Suppression of hepatitis b virus replication by microrna-199a-3p and microrna-210. Antivir. Res 2010, 88, 169–175.
[65]  Dolganiuc, A.; Petrasek, J.; Kodys, K.; Catalano, D.; Mandrekar, P.; Velayudham, A.; Szabo, G. Microrna expression profile in lieber-decarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol. Clin. Exp. Res 2009, 33, 1704–1710.
[66]  Rane, S.; He, M.; Sayed, D.; Vashistha, H.; Malhotra, A.; Sadoshima, J.; Vatner, D.E.; Vatner, S.F.; Abdellatif, M. Downregulation of MiR-199a derepresses hypoxia-inducible factor-1alpha and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ. Res 2009, 104, 879–886.
[67]  Song, X.W.; Li, Q.; Lin, L.; Wang, X.C.; Li, D.F.; Wang, G.K.; Ren, A.J.; Wang, Y.R.; Qin, Y.W.; Yuan, W.J.; Jing, Q. Micrornas are dynamically regulated in hypertrophic hearts, and MiR-199a is essential for the maintenance of cell size in cardiomyocytes. J. Cell. Physiol 2010, 225, 437–443.
[68]  Schneider, M.; Andersen, D.C.; Silahtaroglu, A.; Lyngbaek, S.; Kauppinen, S.; Hansen, J.L.; Sheikh, S.P. Cell-specific detection of microrna expression during cardiomyogenesis by combined in situ hybridization and immunohistochemistry. J. Mol. Histol 2011, 42, 289–299.
[69]  Gonsalves, C.S.; Kalra, V.K. Hypoxia-mediated expression of 5-lipoxygenase-activating protein involves HIF-1alpha and NF-kappab and micrornas 135a and 199a-5p. J. Immunol 2010, 184, 3878–3888.
[70]  Suomi, S.; Taipaleenmaki, H.; Seppanen, A.; Ripatti, T.; Vaananen, K.; Hentunen, T.; Saamanen, A.M.; Laitala-Leinonen, T. Micrornas regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells. Gene Regul. Syst. Biol 2008, 2, 177–191.
[71]  Oskowitz, A.Z.; Lu, J.; Penfornis, P.; Ylostalo, J.; McBride, J.; Flemington, E.K.; Prockop, D.J.; Pochampally, R. Human multipotent stromal cells from bone marrow and microrna: Regulation of differentiation and leukemia inhibitory factor expression. Proc. Natl. Acad. Sci. USA 2008, 105, 18372–18377.
[72]  Akhtar, N.; Haqqi, T.M. Microrna-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes. Ann. Rheum. Dis 2012, 71, 1073–1080.
[73]  Wang, K.H.; Kao, A.P.; Singh, S.; Yu, S.L.; Kao, L.P.; Tsai, Z.Y.; Lin, S.D.; Li, S.S. Comparative expression profiles of mrnas and micrornas among human mesenchymal stem cells derived from breast, face, and abdominal adipose tissues. Kaohsiung J. Med. Sci 2010, 26, 113–122.
[74]  Alt, E.U.; Senst, C.; Murthy, S.N.; Slakey, D.P.; Dupin, C.L.; Chaffin, A.E.; Kadowitz, P.J.; Izadpanah, R. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 2012, 8, 215–225.
[75]  Chen, B.Z.; Yu, S.L.; Singh, S.; Kao, L.P.; Tsai, Z.Y.; Yang, P.C.; Chen, B.H.; Shoei-Lung Li, S. Identification of micrornas expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells. Cell Biol. Int 2011, 35, 29–37.
[76]  Chakrabarty, A.; Tranguch, S.; Daikoku, T.; Jensen, K.; Furneaux, H.; Dey, S.K. Microrna regulation of cyclooxygenase-2 during embryo implantation. Proc. Natl. Acad. Sci. USA 2007, 104, 15144–15149.
[77]  Ben-Ami, O.; Pencovich, N.; Lotem, J.; Levanon, D.; Groner, Y. A regulatory interplay between MiR-27a and runx1 during megakaryopoiesis. Proc. Natl. Acad. Sci. USA 2009, 106, 238–243.
[78]  Lee, D.Y.; Shatseva, T.; Jeyapalan, Z.; Du, W.W.; Deng, Z.; Yang, B.B. A 3′-untranslated region (3′UTR) induces organ adhesion by regulating MiR-199a* functions. PLoS One 2009, 4, e4527.
[79]  Lee, D.Y.; Jeyapalan, Z.; Fang, L.; Yang, J.; Zhang, Y.; Yee, A.Y.; Li, M.; Du, W.W.; Shatseva, T.; Yang, B.B. Expression of versican 3′-untranslated region modulates endogenous microrna functions. PLoS One 2010, 5, e13599.
[80]  Kanda, T.; Ishibashi, O.; Kawahigashi, Y.; Mishima, T.; Kosuge, T.; Mizuguchi, Y.; Shimizu, T.; Arima, Y.; Yokomuro, S.; Yoshida, H.; et al. Identification of obstructive jaundice-related micrornas in mouse liver. Hepato-Gastroenterology 2010, 57, 1013–1023.
[81]  Dai, L.; Gu, L.; Di, W. MiR-199a attenuates endometrial stromal cell invasiveness through suppression of the IKKβ/NF-kappab pathway and reduced interleukin-8 expression. Mol. Hum. Reprod 2012, 18, 136–145.
[82]  Dai, L.; Gu, L.Y.; Zhu, J.; Shi, J.; Wang, Y.; Ji, F.; Di, W. Regulation of microrna-199a on adhesion, migration and invasion ability of human endometrial stromal cells. Zhonghua Fu Chan Ke Za Zhi 2011, 46, 817–821.
[83]  Cai, Z.G.; Zhang, S.M.; Zhang, Y.; Zhou, Y.Y.; Wu, H.B.; Xu, X.P. Micrornas are dynamically regulated and play an important role in lps-induced lung injury. Can. J. Physiol. Pharmacol 2012, 90, 37–43.
[84]  Wu, J.H.; Gao, Y.; Ren, A.J.; Zhao, S.H.; Zhong, M.; Peng, Y.J.; Shen, W.; Jing, M.; Liu, L. Altered microrna expression profiles in retinas with diabetic retinopathy. Ophthalmic Res 2011, 47, 195–201.
[85]  Xu, W.H.; Yao, X.Y.; Yu, H.J.; Huang, J.W.; Cui, L.Y. Downregulation of MiR-199a may play a role in 3-nitropropionic acid induced ischemic tolerance in rat brain. Brain Res 2012, 1429, 116–123.
[86]  Choi, J.S.; Oh, J.H.; Park, H.J.; Choi, M.S.; Park, S.M.; Kang, S.J.; Oh, M.J.; Kim, S.J.; Hwang, S.Y.; Yoon, S. MiRna regulation of cytotoxic effects in mouse sertoli cells exposed to nonylphenol. Reprod. Biol. Endocrinol 2011, 9, 126.
[87]  Park, H.A.; Kubicki, N.; Gnyawali, S.; Chan, Y.C.; Roy, S.; Khanna, S.; Sen, C.K. Natural vitamin E alpha-tocotrienol protects against ischemic stroke by induction of multidrug resistance-associated protein 1. Stroke 2011, 42, 2308–2314.
[88]  Godwin, J.G.; Ge, X.; Stephan, K.; Jurisch, A.; Tullius, S.G.; Iacomini, J. Identification of a microrna signature of renal ischemia reperfusion injury. Proc. Natl. Acad. Sci. USA 2010, 107, 14339–14344.
[89]  Yang, M.H.; Wu, M.Z.; Chiou, S.H.; Chen, P.M.; Chang, S.Y.; Liu, C.J.; Teng, S.C.; Wu, K.J. Direct regulation of twist by hif-1alpha promotes metastasis. Nat. Cell Biol 2008, 10, 295–305.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133