全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Expression of Selected Ginkgo biloba Heat Shock Protein Genes After Cold Treatment Could Be Induced by Other Abiotic Stress

DOI: 10.3390/ijms13055768

Keywords: heat shock proteins, SSH, cold stress, heat stress, abiotic stress, Ginkgo biloba

Full-Text   Cite this paper   Add to My Lib

Abstract:

Heat shock proteins (HSPs) play various stress-protective roles in plants. In this study, three HSP genes were isolated from a suppression subtractive hybridization (SSH) cDNA library of Ginkgo biloba leaves treated with cold stress. Based on the molecular weight, the three genes were designated GbHSP16.8, GbHSP17 and GbHSP70. The full length of the three genes were predicted to encode three polypeptide chains containing 149 amino acids (Aa), 152 Aa, and 657 Aa, and their corresponding molecular weights were predicted as follows: 16.67 kDa, 17.39 kDa, and 71.81 kDa respectively. The three genes exhibited distinctive expression patterns in different organs or development stages. GbHSP16.8 and GbHSP70 showed high expression levels in leaves and a low level in gynoecia, GbHSP17 showed a higher transcription in stamens and lower level in fruit. This result indicates that GbHSP16.8 and GbHSP70 may play important roles in Ginkgo leaf development and photosynthesis, and GbHSP17 may play a positive role in pollen maturation. All three GbHSPs were up-regulated under cold stress, whereas extreme heat stress only caused up-regulation of GbHSP70, UV-B treatment resulted in up-regulation of GbHSP16.8 and GbHSP17, wounding treatment resulted in up-regulation of GbHSP16.8 and GbHSP70, and abscisic acid (ABA) treatment caused up-regulation of GbHSP70 primarily.

References

[1]  Ballinger, D.G.; Pardue, M.L. The control of protein synthesis during heat shock in Drosophila cells involves altered polypeptide elongation rates. Cell 1983, 33, 103–113.
[2]  Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 2004, 9, 244–252.
[3]  S?rensen, J.G.; Kristensen, T.N.; Loeschcke, V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett 2003, 6, 1025–1037.
[4]  Sun, W.; van Montagu, M.; Verbruggen, N. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta 2002, 1577, 1–9.
[5]  Zou, J.; Liu, A.; Chen, X.; Zhou, X.; Gao, G.; Wang, W.; Zhang, X. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J. Plant Physiol 2009, 166, 851–861.
[6]  Vierling, E. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol 1991, 42, 579–620.
[7]  Sejerkilde, M.; S?rensen, J.G.; Loeschcke, V. Effects of cold-and heat hardening on thermal resistance in Drosophila melanogaster. J. Insect Physiol 2003, 49, 719–726.
[8]  Tammariello, S.P.; Rinehart, J.P.; Denlinger, D.L. Desiccation elicits heat shock protein transcription in the flesh fly, Sarcophaga crassipalpis, but does not enhance tolerance to high or low temperatures. J. Insect Physiol 1999, 45, 933–938.
[9]  Tedengren, M.; Olsson, B.; Bradley, B.; Zhou, L. Heavy metal uptake, physiological response and survival of the blue mussel (Mytilus edulis) from marine and brackish waters in relation to the induction of heat-shock protein 70. Hydrobiologia 1999, 393, 261–269.
[10]  Spees, J.L.; Chang, S.A.; Snyder, M.J.; Chang, E.S. Osmotic induction of stress-responsive gene expression in the lobster Homarus americanus. Biol. Bull 2002, 203, 331–337.
[11]  Ma, E.; Haddad, G.G. Anoxia regulates gene expression in the central nervous system of Drosophila melanogaster. Mol. Brain Res 1997, 46, 325–328.
[12]  Rinehart, J.P.; Denlinger, D.L.; Rivers, D.B. Upregulation of transcripts encoding select heat shock proteins in the flesh fly Sarcophaga crassipalpis in response to venom from the ectoparasitoid wasp Nasonia vitripennis. J. Invertebr. Pathol 2002, 79, 62–63.
[13]  Murakami, T.; Matsuba, S.; Funatsuki, H.; Kawaguchi, K.; Saruyama, H.; Tanida, M.; Sato, Y. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol. Breed 2004, 13, 165–175.
[14]  Niedzwiecki, A.; Reveillaud, I.; Fleming, J.E. Changes in superoxide dismutase and catalase in aging heat-shocked Drosophila. Free Radic. Res. Commun 1992, 17, 355–367.
[15]  Musch, M.W.; Kapil, A.; Chang, E.B. Heat shock protein 72 binds and protects dihydrofolate reductase against oxidative injury. Biochem Biophys. Res. Commun 2004, 313, 185–192.
[16]  Campbell, J.L.; Klueva, N.Y.; Zheng, H.; Nieto-Sotelo, J.; Ho, T.H.; Nguyen, H.T. Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA. Biochim. Biophys. Acta 2001, 1517, 270–277.
[17]  Chang, P.F.; Jinn, T.L.; Huang, W.K.; Chen, Y.; Chang, H.M.; Wang, C.W. Induction of a cDNA clone from rice encoding a class II small heat shock protein by heat stress, mechanical injury, and salicylic acid. Plant Sci 2007, 172, 64–75.
[18]  Lewis, J.; Devin, A.; Miller, A.; Lin, Y.; Rodriguez, Y.; Neckers, L.; Liu, Z. Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-κB activation. J. Biol. Chem 2000, 275, 10519–10526.
[19]  Pandey, P.; Saleh, A.; Nakazawa, A.; Kumar, S.; Srinivasula, S.M.; Kumar, V.; Weichselbaum, R.; Nalin, C.; Alnemri, E.S.; Kufe, D. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 2000, 19, 4310–4322.
[20]  Volkov, R.A.; Panchuk, I.I.; Sch?ffl, F. Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol. Biol 2005, 57, 487–502.
[21]  Sanmiya, K.; Suzuki, K.; Egawa, Y.; Shono, M. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS. Lett 2004, 557, 265–268.
[22]  Guo, S.J.; Zhou, H.Y.; Zhang, X.S.; Li, X.G.; Meng, Q.W. Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. J. Plant Physiol 2007, 164, 126–136.
[23]  Sato, Y.; Yokoya, S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 2008, 27, 329–334.
[24]  Smith, J.; Luo, Y. Studies on molecular mechanisms of Ginkgo biloba extract. Appl. Microbiol. Biotechnol 2004, 64, 465–472.
[25]  van Beek, T. Chemical analysis of Ginkgo biloba leaves and extracts. J. Chromatogr. A 2002, 967, 21–55.
[26]  Deng, Z.; Wang, Y.; Jiang, K.; Liu, X.; Wu, W.; Gao, S.; Lin, J.; Sun, X.; Tang, K. Molecular cloning and characterization of a novel dehydrin gene from Ginkgo biloba. Biosci. Rep 2006, 26, 203–215.
[27]  Mayer, M.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell Mol. Life Sci 2005, 62, 670–684.
[28]  Wu, X.; Yano, M.; Washida, H.; Kido, H. The second metal-binding site of 70 kDa heat-shock protein is essential for ADP binding, ATP hydrolysis and ATP synthesis. Biochem. J 2004, 378, 793–799.
[29]  Morshauser, R.C.; Wang, H.; Flynn, G.C.; Zuiderweg, E.R. The peptide-binding domain of the chaperone protein Hsc70 has an unusual secondary structure topology. Biochemistry 1995, 34, 6261–6266.
[30]  Morshauser, R.C.; Hu, W.; Wang, H.; Pang, Y.; Flynn, G.C.; Zuiderweg, E.R. High-resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc701. J. Mol. Biol 1999, 289, 1387–1403.
[31]  Bondino, H.G.; Valle, E.M. Evolution and functional diversification of the small heat shock protein α-crystallin family in higher plants. Planta 2011, doi:10.1007/s00425-011-1575-9.
[32]  Waters, E.R.; Lee, G.J.; Vierling, E. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot 1996, 47, 325–338.
[33]  Plesofsky-Vig, N.; Vig, J.; Brambl, R. Phylogeny of the α-crystallin-related heat-shock proteins. J. Mol. Evol 1992, 35, 537–545.
[34]  Horwitz, J. Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 1992, 89, 10449–10453.
[35]  Merck, K.; Groenen, P.; Voorter, C.; de Haard-Hoekman, W.; Horwitz, J.; Bloemendal, H.; De, J.W. Structural and functional similarities of bovine α-crystallin and mouse small heat-shock protein A family of chaperones. J. Biol. Chem 1993, 268, 1046–1062.
[36]  Kim, K.K.; Kim, R.; Kim, S.H. Crystal structure of a small heat-shock protein. Nature 1998, 394, 595–599.
[37]  L?w, D.; Br?ndle, K.; Nover, L.; Forreiter, C. Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta 2000, 211, 575–582.
[38]  Stevenson, M.; Calderwood, S. Members of the 70-kilodalton heat shock protein family contain a highly conserved calmodulin-binding domain. Mol. Cell Biol 1990, 10, 1234–1238.
[39]  Zhang, Z.; Quick, M.K.; Kanelakis, K.C.; Gijzen, M.; Krishna, P. Characterization of a plant homolog of hop, a cochaperone of hsp90. Plant Physiol 2003, 131, 525–535.
[40]  Sung, D.Y.; Vierling, E.; Guy, C.L. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 2001, 126, 789–800.
[41]  Koo, H.J.; Xia, X.; Hong, C.B. Genes and expression pattern of tobacco mitochondrial small heat shock protein under high-temperature stress. J. Plant Biol 2003, 46, 204–210.
[42]  Guan, J.C.; Jinn, T.L.; Yeh, C.H.; Feng, S.P.; Chen, Y.M.; Lin, C.Y. Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol. Biol 2004, 56, 795–809.
[43]  Sun, W.; Bernard, C.; Van, De.; Cotte, B.; Van Montagu, M.; Verbruggen, N. At-HSP17.6A encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 2001, 27, 407–415.
[44]  Collins, G.G.; Nie, X.L.; Saltveit, M.E. Heat shock proteins and chilling sensitivity of mung bean hypocotyls. J. Exp. Bot 1995, 46, 795–802.
[45]  Anderson, J.V.; Li, Q.B.; Haskell, D.W.; Guy, C.L. Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol 1994, 104, 1359–1370.
[46]  Lopez-Matas, M.A.; Nu?ez, P.; Soto, A.; Allona, I.; Casado, R.; Collada, C.; Guevara, M.A.; Aragoncillo, C.; Gomez, L. Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures. Plant Physiol 2004, 134, 1708–1717.
[47]  Krishna, P.; Sacco, M.; Cherutti, J.F.; Hill, S. Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiol 1995, 107, 915–923.
[48]  Soto, A.; Allona, I.; Collada, C.; Guevara, M.A.; Casado, R.; Rodriguez-Cerezo, E.; Aragoncillo, C.; Gomez, L. Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol 1999, 120, 521–528.
[49]  Wang, L.; Zhao, C.M.; Wang, Y.J.; Liu, J. Overexpression of chloroplast-localized small molecular heat-shock protein enhances chilling tolerance in tomato plant. J. Plant Physiol. Mol. Biol 2005, 31, 167–174.
[50]  Guo, S.J.; Chen, N.; Guo, P.; Meng, Q.W. cDNA cloning and expression of a cytosolic small heat shock protein gene (CaHSP18) from Capsicum annuum. J. Plant Physiol. Mol. Biol 2005, 31, 409–416.
[51]  Zhu, W.; Lu, M.; Gong, Z.; Chen, R. Cloning and expression of a small heat shock protein gene CaHSP24 from pepper under abiotic stress. Afr. J. Biotechnol 2011, 10, 4968–4975.
[52]  Morimoto, R. Cells in stress: Transcriptional activation of heat shock genes. Science 1993, 259, 1409–1450.
[53]  Krizek, D.T.; Kramer, G.F.; Upadhyaya, A.; Mirecki, R.M. UV-B response of cucumber seedlings grown under metal halide and high pressure sodium-deluxe lamps. Physiol. Plant 1993, 88, 350–358.
[54]  Strid, ?. Alteration in expression of defence genes in Pisum sativum after exposure to supplementary ultraviolet-B radiation. Plant Cell Physiol 1993, 34, 949–953.
[55]  Banzet, N.; Richaud, C.; Deveaux, Y.; Kazmaier, M.; Gagnon, J.; Triantaphylidès, C. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J 1998, 13, 519–527.
[56]  Hamilton, E.W.; Heckathorn, S.A. Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 2001, 126, 1266–1274.
[57]  Kang, H.M.; Saltveit, M.E. Wound-induced PAL activity is suppressed by heat-shock treatments that induce the synthesis of heat-shock proteins. Physiol. Plant 2003, 119, 450–455.
[58]  Leonardi, R.; Villari, L.; Caltabiano, M.; Travali, S. Heat shock protein 27 expression in the epithelium of periapical lesions. J. Endod 2001, 27, 89–92.
[59]  Cho, E.K.; Hong, C.B. Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Rep 2006, 25, 349–358.
[60]  Hu, X.; Liu, R.; Li, Y.; Wang, W.; Tai, F.; Xue, R.; Li, C. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul 2010, 60, 225–235.
[61]  Daie, J.; Campbell, W.F. Response of tomato plants to stressful temperatures: Increase in abscisic acid concentrations. Plant Physiol 1981, 67, 26–29.
[62]  Ye, S.F.; Yu, S.W.; Shu, L.B.; Wu, J.H.; Wu, A.Z.; Luo, L.J. Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice. Chin. Sci. Bull 2011, 57, 336–343.
[63]  Xu, F.; Cheng, H.; Cai, R.; Li, L.L.; Chang, J.; Zhu, J.; Zhang, F.X.; Chen, L.J.; Wang, Y.; Cheng, S.H. Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses. Mol. Cells 2008, 26, 536–547.
[64]  Jansson, S.; Meyer-Gauen, G.; Cerff, R.; Martin, W. Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes. J. Mol. Evol 1994, 39, 34–46.
[65]  NCBI Basic Local Alignment Search Tool, Available online: http://www.ncbi.nlm.nih.gov/blast/Blast.cgi , accessed on 5 October 2011.
[66]  Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol 2007, 24, 1596–1599.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133