The organ of Corti (OC) in the cochlea plays an essential role in auditory signal transduction in the inner ear. For its minute size and trace amount of proteins, the identification of the molecules in pathophysiologic processes in the bone-encapsulated OC requires both delicate separation and a highly sensitive analytical tool. Previously, we reported the development of a high resolution metal-free nanoscale liquid chromatography system for highly sensitive phosphoproteomic analysis. Here this system was coupled with a LTQ-Orbitrap XL mass spectrometer to investigate the OC proteome from normal hearing FVB/N male mice. A total of 628 proteins were identified from six replicates of single LC-MS/MS analysis, with a false discovery rate of 1% using the decoy database approach by the OMSSA search engine. This is currently the largest proteome dataset for the OC. A total of 11 proteins, including cochlin, myosin VI, and myosin IX, were identified that when defective are associated with hearing impairment or loss. This study demonstrated the effectiveness of our nanoLC-MS/MS platform for sensitive identification of hearing loss-associated proteins from minute amount of tissue samples.
References
[1]
Hilgert, N.; Smith, R.J.; van Camp, G. Function and expression pattern of nonsyndromic deafness genes. Curr. Mol. Med 2009, 9, 546–564.
[2]
Martini, A.; Calzolari, F.; Sensi, A. Genetic syndromes involving hearing. Int. J. Pediatr. Otorhinolaryngol 2009, 73, S2–S12.
[3]
Zybailov, B.; Mosley, A.L.; Sardiu, M.E.; Coleman, M.K.; Florens, L.; Washburn, M.P. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res 2006, 5, 2339–2347.
[4]
Leibovici, M.; Safieddine, S.; Petit, C. Mouse models for human hereditary deafness. Curr. Top. Dev. Biol 2008, 84, 385–429.
[5]
Chatterjee, S.; Kraus, P.; Lufkin, T. A symphony of inner ear developmental control genes. BMC Genet 2010, 11, 68.
[6]
Dror, A.A.; Avraham, K.B. Hearing impairment: A panoply of genes and functions. Neuron 2010, 68, 293–308.
[7]
Raviv, D.; Dror, A.A.; Avraham, K.B. Hearing loss: A common disorder caused by many rare alleles. Ann. N. Y. Acad. Sci 2010, 1214, 168–179.
[8]
Frolenkov, G.I.; Belyantseva, I.A.; Friedman, T.B.; Griffith, A.J. Genetic insights into the morphogenesis of inner ear hair cells. Nat. Rev. Genet 2004, 5, 489–498.
[9]
Deafness and hearing impairment, Available online: http://www.who.int/mediacentre/factsheets/fs300/en/ , accessed on 1 February 2012.
Thalmann, I. Inner ear proteomics: A fad or hear to stay. Brain Res 2006, 1091, 103–112.
[12]
Gygi, S.P.; Rochon, Y.; Franza, B.R.; Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol 1999, 19, 1720–1730.
[13]
Sanborn, K.B.; Mace, E.M.; Rak, G.D.; Difeo, A.; Martignetti, J.A.; Pecci, A.; Bussel, J.B.; Favier, R.; Orange, J.S. Phosphorylation of the myosin IIA tailpiece regulates single myosin IIA molecule association with lytic granules to promote NK-cell cytotoxicity. Blood 2011, 118, 5862–5871.
[14]
Friedman, L.M.; Dror, A.A.; Avraham, K.B. Mouse models to study inner ear development and hereditary hearing loss. Int. J. Dev. Biol 2007, 51, 609–631.
[15]
Zheng, Q.Y.; Rozanas, C.R.; Thalmann, I.; Chance, M.R.; Alagramam, K.N. Inner ear proteomics of mouse models for deafness, a discovery strategy. Brain Res 2006, 1091, 113–121.
[16]
Thalmann, I.; Hughes, I.; Tong, B.D.; Ornitz, D.M.; Thalmann, R. Microscale analysis of proteins in inner ear tissues and fluids with emphasis on endolymphatic sac, otoconia, and organ of Corti. Electrophoresis 2006, 27, 1598–1608.
[17]
Gagnon, L.H.; Longo-Guess, C.M.; Berryman, M.; Shin, J.B.; Saylor, K.W.; Yu, H.; Gillespie, P.G.; Johnson, K.R. The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function. J. Neurosci 2006, 26, 10188–10198.
[18]
Shin, J.B.; Streijger, F.; Beynon, A.; Peters, T.; Gadzala, L.; McMillen, D.; Bystrom, C.; van der Zee, C.E.; Wallimann, T.; Gillespie, P.G. Hair bundles are specialized for ATP delivery via creatine kinase. Neuron 2007, 53, 371–386.
[19]
Coling, D.E.; Ding, D.; Young, R.; Lis, M.; Stofko, E.; Blumenthal, K.M.; Salvi, R.J. Proteomic analysis of cisplatin-induced cochlear damage: Methods and early changes in protein expression. Hear. Res 2007, 226, 140–156.
[20]
Jamesdaniel, S.; Ding, D.; Kermany, M.H.; Jiang, H.; Salvi, R.; Coling, D. Analysis of cochlear protein profiles of Wistar, Sprague-Dawley, and Fischer 344 rats with normal hearing function. J. Proteome Res 2009, 8, 3520–3528.
[21]
Yang, Y.; Dai, M.; Wilson, T.M.; Omelchenko, I.; Klimek, J.E.; Wilmarth, P.A.; David, L.L.; Nuttall, A.L.; Gillespie, P.G.; Shi, X. Na+/K+-ATPase alpha1 identified as an abundant protein in the blood-labyrinth barrier that plays an essential role in the barrier integrity. PLoS One 2011, 6, doi:10.1371/journal.pone.0016547.
[22]
Petit, C.; Richardson, G.P. Linking genes underlying deafness to hair-bundle development and function. Nat. Neurosci 2009, 12, 703–710.
Hereditary hearing loss homepage, Available online: http://hereditaryhearingloss.org/ , accessed on 9 March 2012.
[25]
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc 2009, 4, 44–57.
[26]
Zheng, Q.Y.; Rozanas, C.R.; Thalmann, I.; Chance, M.R.; Alagramam, K.N. Inner ear proteomics of mouse models for deafness, a discovery strategy. Brain Res 2006, 1091, 113–121.
[27]
Kathiresan, T.; Harvey, M.; Orchard, S.; Sakai, Y.; Sokolowski, B. A protein interaction network for the large conductance Ca(2+)-activated K(+) channel in the mouse cochlea. Mol. Cell. Proteomics 2009, 8, 1972–1987.
[28]
Gillespie, P.G.; Muller, U. Mechanotransduction by hair cells: Models, molecules, and mechanisms. Cell 2009, 139, 33–44.
[29]
Richardson, G.P.; de Monvel, J.B.; Petit, C. How the genetics of deafness illuminates auditory physiology. Annu. Rev. Physiol 2011, 73, 311–334.
[30]
Walker, R.G.; Hudspeth, A.J.; Gillespie, P.G. Calmodulin and calmodulin-binding proteins in hair bundles. Proc. Natl. Acad. Sci. USA 1993, 90, 2807–2811.
[31]
Manor, U.; Disanza, A.; Grati, M.; Andrade, L.; Lin, H.; di Fiore, P.P.; Scita, G.; Kachar, B. Regulation of stereocilia length by myosin XVa and whirlin depends on the actin-regulatory protein Eps8. Curr. Biol 2011, 21, 167–172.
[32]
Uthaiah, R.C.; Hudspeth, A.J. Molecular anatomy of the hair cell’s ribbon synapse. J. Neurosci 2010, 30, 12387–12399.
[33]
Zhao, R.; Ding, S.J.; Shen, Y.; Camp, D.G., II; Livesay, E.A.; Udseth, H.; Smith, R.D. Automated metal-free multiple-column nanoLC for improved phosphopeptide analysis sensitivity and throughput. J. Chromatogr. B 2009, 877, 663–670.
[34]
Yates, J.R.; Ruse, C.I.; Nakorchevsky, A. Proteomics by mass spectrometry: Approaches, advances, and applications. Annu. Rev. Biomed. Eng 2009, 11, 49–79.
[35]
Robertson, N.G.; Cremers, C.W.; Huygen, P.L.; Ikezono, T.; Krastins, B.; Kremer, H.; Kuo, S.F.; Liberman, M.C.; Merchant, S.N.; Miller, C.E.; et al. Cochlin immunostaining of inner ear pathologic deposits and proteomic analysis in DFNA9 deafness and vestibular dysfunction. Hum. Mol. Genet 2006, 15, 1071–1085.
[36]
Robertson, N.G.; Khetarpal, U.; Gutierrez-Espeleta, G.A.; Bieber, F.R.; Morton, C.C. Isolation of novel and known genes from a human fetal cochlear cDNA library using subtractive hybridization and differential screening. Genomics 1994, 23, 42–50.
[37]
Robertson, N.G.; Resendes, B.L.; Lin, J.S.; Lee, C.; Aster, J.C.; Adams, J.C.; Morton, C.C. Inner ear localization of mRNA and protein products of COCH, mutated in the sensorineural deafness and vestibular disorder, DFNA9. Hum. Mol. Genet 2001, 10, 2493–2500.
[38]
Ikezono, T.; Omori, A.; Ichinose, S.; Pawankar, R.; Watanabe, A.; Yagi, T. Identification of the protein product of the Coch gene (hereditary deafness gene) as the major component of bovine inner ear protein. Biochim. Biophys. Acta 2001, 1535, 258–265.
[39]
Goodyear, R.J.; Richardson, G.P. Extracellular matrices associated with the apical surfaces of sensory epithelia in the inner ear: Molecular and structural diversity. J. Neurobiol 2002, 53, 212–227.
[40]
Richardson, G.P.; Russell, I.J.; Duance, V.C.; Bailey, A.J. Polypeptide composition of the mammalian tectorial membrane. Hear. Res 1987, 25, 45–60.
[41]
Thalmann, I.; Thallinger, G.; Crouch, E.C.; Comegys, T.H.; Barrett, N.; Thalmann, R. Composition and supramolecular organization of the tectorial membrane. Laryngoscope 1987, 97, 357–367.
[42]
Legan, P.K.; Rau, A.; Keen, J.N.; Richardson, G.P. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J. Biol. Chem 1997, 272, 8791–8801.
[43]
Rau, A.; Legan, P.K.; Richardson, G.P. Tectorin mRNA expression is spatially and temporally restricted during mouse inner ear development. J. Comp. Neurol 1999, 405, 271–280.
[44]
Zwaenepoel, I.; Mustapha, M.; Leibovici, M.; Verpy, E.; Goodyear, R.; Liu, X.Z.; Nouaille, S.; Nance, W.E.; Kanaan, M.; Avraham, K.B.; et al. Otoancorin, an inner ear protein restricted to the interface between the apical surface of sensory epithelia and their overlying acellular gels, is defective in autosomal recessive deafness DFNB22. Proc. Natl. Acad. Sci. USA 2002, 99, 6240–6245.
[45]
Avraham, K.B.; Hasson, T.; Sobe, T.; Balsara, B.; Testa, J.R.; Skvorak, A.B.; Morton, C.C.; Copeland, N.G.; Jenkins, N.A. Characterization of unconventional MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice. Hum. Mol. Genet 1997, 6, 1225–1231.
[46]
Self, T.; Sobe, T.; Copeland, N.G.; Jenkins, N.A.; Avraham, K.B.; Steel, K.P. Role of myosin VI in the differentiation of cochlear hair cells. Dev. Biol 1999, 214, 331–341.
[47]
Roux, I.; Hosie, S.; Johnson, S.L.; Bahloul, A.; Cayet, N.; Nouaille, S.; Kros, C.J.; Petit, C.; Safieddine, S. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses. Hum. Mol. Genet 2009, 18, 4615–4628.
[48]
Lalwani, A.K.; Atkin, G.; Li, Y.; Lee, J.Y.; Hillman, D.E.; Mhatre, A.N. Localization in stereocilia, plasma membrane, and mitochondria suggests diverse roles for NMHC-IIa within cochlear hair cells. Brain Res 2008, 1197, 13–22.
[49]
Mhatre, A.N.; Li, J.; Kim, Y.; Coling, D.E.; Lalwani, A.K. Cloning and developmental expression of nonmuscle myosin IIA (Myh9) in the mammalian inner ear. J. Neurosci. Res 2004, 76, 296–305.
[50]
Mhatre, A.N.; Li, Y.; Atkin, G.; Maghnouj, A.; Lalwani, A.K. Expression of Myh9 in the mammalian cochlea: Localization within the stereocilia. J. Neurosci. Res 2006, 84, 809–818.
[51]
Slepecky, N.; Chamberlain, S.C. Distribution and polarity of actin in the sensory hair cells of the chinchilla cochlea. Cell Tissue Res 1982, 224, 15–24.
[52]
Flock, A.; Cheung, H.C.; Flock, B.; Utter, G. Three sets of actin filaments in sensory cells of the inner ear. Identification and functional orientation determined by gel electrophoresis, immunofluorescence and electron microscopy. J. Neurocytol 1981, 10, 133–147.
[53]
Belyantseva, I.A.; Perrin, B.J.; Sonnemann, K.J.; Zhu, M.; Stepanyan, R.; McGee, J.; Frolenkov, G.I.; Walsh, E.J.; Friderici, K.H.; Friedman, T.B.; et al. Gamma-actin is required for cytoskeletal maintenance but not development. Proc. Natl. Acad. Sci. USA 2009, 106, 9703–9708.
[54]
Delpire, E.; Lu, J.; England, R.; Dull, C.; Thorne, T. Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat. Genet 1999, 22, 192–195.
[55]
Henzl, M.T.; O’Neal, J.; Killick, R.; Thalmann, I.; Thalmann, R. OCP1, an F-box protein, co-localizes with OCP2/SKP1 in the cochlear epithelial gap junction region. Hear. Res 2001, 157, 100–111.
[56]
Henzl, M.T.; Thalmann, I.; Larson, J.D.; Ignatova, E.G.; Thalmann, R. The cochlear F-box protein OCP1 associates with OCP2 and connexin 26. Hear. Res 2004, 191, 101–109.
[57]
Thalmann, R.; Henzl, M.T.; Thalmann, I. Specific proteins of the organ of Corti. Acta Otolaryngol 1997, 117, 265–268.
[58]
Morris, J.K.; Maklad, A.; Hansen, L.A.; Feng, F.; Sorensen, C.; Lee, K.F.; Macklin, W.B.; Fritzsch, B. A disorganized innervation of the inner ear persists in the absence of ErbB2. Brain Res 2006, 1091, 186–199.
[59]
Lee, M.J.; Calle, E.; Brennan, A.; Ahmed, S.; Sviderskaya, E.; Jessen, K.R.; Mirsky, R. In early development of the rat mRNA for the major myelin protein P(0) is expressed in nonsensory areas of the embryonic inner ear, notochord, enteric nervous system, and olfactory ensheathing cells. Dev. Dyn 2001, 222, 40–51.
[60]
Aarnisalo, A.A.; Green, K.M.; O’Malley, J.; Makary, C.; Adams, J.; Merchant, S.N.; Evans, J.E. A method for MS(E) differential proteomic analysis of archival formalin-fixed celloidin-embedded human inner ear tissue. Hear. Res 2010, 270, 15–20.
[61]
Basappa, J.; Turcan, S.; Vetter, D.E. Corticotropin-releasing factor-2 activation prevents gentamicin-induced oxidative stress in cells derived from the inner ear. J. Neurosci. Res 2010, 88, 2976–2990.
[62]
Elkan-Miller, T.; Ulitsky, I.; Hertzano, R.; Rudnicki, A.; Dror, A.A.; Lenz, D.R.; Elkon, R.; Irmler, M.; Beckers, J.; Shamir, R.; et al. Integration of transcriptomics, proteomics, and microRNA analyses reveals novel microRNA regulation of targets in the mammalian inner ear. PLoS One 2011, 6, e18195.
[63]
Morris, K.A.; Snir, E.; Pompeia, C.; Koroleva, I.V.; Kachar, B.; Hayashizaki, Y.; Carninci, P.; Soares, M.B.; Beisel, K.W. Differential expression of genes within the cochlea as defined by a custom mouse inner ear microarray. J. Assoc. Res. Otolaryngol 2005, 6, 75–89.
[64]
Zheng, J.; Miller, K.K.; Yang, T.; Hildebrand, M.S.; Shearer, A.E.; DeLuca, A.P.; Scheetz, T.E.; Drummond, J.; Scherer, S.E.; Legan, P.K.; et al. Carcinoembryonic antigen-related cell adhesion molecule 16 interacts with alpha-tectorin and is mutated in autosomal dominant hearing loss (DFNA4). Proc. Natl. Acad. Sci. USA 2011, 108, 4218–4223.
[65]
Voges, D.; Zwickl, P.; Baumeister, W. The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu. Rev. Biochem 1999, 68, 1015–1068.
[66]
Nelson, R.F.; Glenn, K.A.; Zhang, Y.; Wen, H.; Knutson, T.; Gouvion, C.M.; Robinson, B.K.; Zhou, Z.; Yang, B.; Smith, R.J.; et al. Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J. Neurosci 2007, 27, 5163–5171.
[67]
Nakano, Y.; Kim, S.H.; Kim, H.M.; Sanneman, J.D.; Zhang, Y.; Smith, R.J.; Marcus, D.C.; Wangemann, P.; Nessler, R.A.; Banfi, B. A claudin-9-based ion permeability barrier is essential for hearing. PLoS Genet 2009, 5, doi:10.1371/journal.pgen.1000610.
[68]
Kikuchi, T.; Kimura, R.S.; Paul, D.L.; Adams, J.C. Gap junctions in the rat cochlea: Immunohistochemical and ultrastructural analysis. Anat. Embryol. (Berl.) 1995, 191, 101–118.
Geer, L.Y.; Markey, S.P.; Kowalak, J.A.; Wagner, L.; Xu, M.; Maynard, D.M.; Yang, X.; Shi, W.; Bryant, S.H. Open mass spectrometry search algorithm. J. Proteome Res 2004, 3, 958–964.
[71]
Kersey, P.J.; Duarte, J.; Williams, A.; Karavidopoulou, Y.; Birney, E.; Apweiler, R. The International Protein Index: An integrated database for proteomics experiments. Proteomics 2004, 4, 1985–1988.
[72]
Elias, J.E.; Gygi, S.P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 2007, 4, 207–214.
[73]
Huang, X.; Tolmachev, A.V.; Shen, Y.; Liu, M.; Huang, L.; Zhang, Z.; Anderson, G.A.; Smith, R.D.; Chan, W.C.; Hinrichs, S.H.; et al. UNiquant, a program for quantitative proteomics analysis using stable isotope labeling. J. Proteome Res 2011, 10, 1228–1237.
[74]
Paoletti, A.C.; Parmely, T.J.; Tomomori-Sato, C.; Sato, S.; Zhu, D.; Conaway, R.C.; Conaway, J.W.; Florens, L.; Washburn, M.P. Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc. Natl. Acad. Sci. USA 2006, 103, 18928–18933.
[75]
Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet 2000, 25, 25–29.