全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Study of Essential Oils Extracted from Algerian Myrtus communis L. Leaves Using Microwaves and Hydrodistillation

DOI: 10.3390/ijms13044673

Keywords: Myrtus communis L., essential oils, solvent free microwave extraction SFME, hydrodistillation, antioxidant activity, antimicrobial activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two different extraction methods were used for a comparative study of Algerian Myrtle leaf essential oils: solvent-free-microwave-extraction (SFME) and conventional hydrodistillation (HD). Essential oils analyzed by GC and GC-MS presented 51 components constituting 97.71 and 97.39% of the total oils, respectively. Solvent-Free-Microwave-Extract Essential oils SFME-EO were richer in oxygenated compounds. Their major compounds were 1,8-cineole, followed by α-pinene as against α-pinene, followed by 1,8-cineole for HD. Their antimicrobial activity was investigated on 12 microorganisms. The antioxidant activities were studied with the 2,2-diphenyl-1-picrylhydrazyl (DPPH ?) radical scavenging method. Generally, both essential oils showed high antimicrobial and weak antioxidant activities. Microstructure analyses were also undertaken on the solid residue of myrtle leaves by Scanning Electronic Microscopy (SEM); it showed that the SFME-cellular structure undergoes significant modifications compared to the conventional HD residual solid. Comparison between hydrodistillation and SFME presented numerous distinctions. Several advantages with SFME were observed: faster kinetics and higher efficiency with similar yields: 0.32% dry basis, in 30 min as against 180 min for HD.

References

[1]  Snow, N.; McFadden, J.; Evans, T.M.; Salywon, A.M.; Wojciechowski, M.F.; Wilson, P.G. Morphological and molecular evidence of polyphyly in rhodomyrtus (Myrtaceae: Myrteae). Syst. Bot 2011, 36, 390–404.
[2]  Barboni, T.; Venturini, N.; Paolini, J.; Desjobert, J.M.; Chiaramonti, N.; Costa, J. Characterisation of volatiles and polyphenols for quality assessment of alcoholic beverages prepared from Corsican Myrtus communis berries. Food Chem 2010, 122, 1304–1312.
[3]  ?zek, T.; Demirci, B.; Baser, K.H.C. Chemical composition of tukish myrtle oil. J. Essent. Oil Res 2000, 12, 541–544.
[4]  Berka-Zougali, B.; Hassani, A.; Besombes, C.; Allaf, K. Extraction of essential oils from Algerian myrtle leaves using instant controlled pressure drop technology. J. Chromatogr. A 2010, 1217, 6134–6142.
[5]  Aydin, C.; ?zcan, M.M. Determination of nutritional and physical properties of myrtle (Myrtus communis L.) fruits growing wild in Turkey. J. Food Eng 2007, 79, 453–458.
[6]  Flamini, G.; Cioni, P.L.; Morelli, I.; Maccioni, S.; Baldini, R. Phytochemical typologies in some populations of Myrtus communis L. On Caprione Promontory (East Liguria, Italy). Food Chem 2004, 85, 599–604.
[7]  Gardeli, C.; Papageorgiou, V.; Mallouchos, A.; Theodosis, K.; Komaitis, M. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem 2008, 107, 1120–1130.
[8]  Uehleke, H.; Brinkschulte-Freitas, M. Oral toxicity of an essential oil from myrtle and adaptive liver stimulation. Toxicology 1979, 12, 335–342.
[9]  Nassar, M.; Aboutabl, E.A.; Ahmed, R.F.; El-Khrisy, E.D.A.; Ibrahim, K.M.; Sleem, A.A. Secondary metabolites and bioactivities of Myrtus communis. Pharmacognosy Res 2010, 2, 325–329.
[10]  Owlia, P.; Saderi, H.; Rasooli, I.; Sefidkon, F. Antimicrobial characteristics of some herbal Oils on Pseudomonas aeruginosa with special reference to their chemical compositions. Iran. J. Pharm. Res 2009, 8, 107–114.
[11]  Aidi Wannes, W.; Mhamdi, B; Sriti, J.; Ben Jemia, M.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem. Toxicol 2010, 48, 1362–1370.
[12]  Chalchat, J.C.; Garry, R.P.; Michet, A. Essential oils of Myrtle (Myrtus communis L.) of the Miterranean littoral. J. Essent. Oil Res 1998, 10, 613–617.
[13]  Jerkovic, I.; Radonic, A.; Borcic, I. Comparative study of leaf, fruit and flower essential oils from Croatian Myrtus communis L. during a one-year vegetative cycle. J. Essent. Oil Res 2002, 14, 266–270.
[14]  Boelens, M.H.; Jimènez, R. The chemical composition of Spanish myrtle oils. Part II. J. Essent. Oil Res 1992, 4, 349–353.
[15]  Asllani, U. Chemical composition of albanian myrtle oil. J. Essent. Oil Res 2000, 12, 140–142.
[16]  Gauthier, R.; Gourai, M.; Bellakhdar, J. A propos de l’huile essentielle de Myrtus communis L. var.italica et var.baetica récolté au Maroc: II. Rendements et compositions selon le mode d’extraction; comparaison avec diverses sources. Al biruniya. Rev. Mar. Pharm 1988, 4, 117–132.
[17]  Ghasemi, E.; Raofie, F.; Mashkouri-Najafi, N. Application of response surface methodology and central composite design for the optimisation of supercritical fluid extraction of essential oils from Myrtus communis L. leaves. Food Chem 2010, 126, 1449–1453.
[18]  Bousbia, N.; Abert-Vian, M.; Ferhat, M.A.; Petitcolas, E.; Meklati, B.Y.; Chemat, F. Comparison of two isolation methods for essential oil from rosemary leaves; Hydrodistillation and microwave hydrodiffusion and gravity. Food Chem 2009, 114, 355–362.
[19]  Khajeh, M.; Yamini, Y.; Bahramifar, N.; Sefidkon, F.; Pirmoradei, M.R. Comparison of essential oils compositions of Ferula assa-foetida obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food Chem 2005, 91, 639–644.
[20]  Guan, W.; Li, S.; Yan, R.; Tang, S.; Quan, C. Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chem 2007, 101, 1558–1564.
[21]  Mounir, S.; Schuck, P.; Allaf, K. Structure and attribute modifications of spray dried skim milk powder treated by DIC (Instant controlled pressure drop) technology. Dairy Sci. Technol 2010, 90, 301–320.
[22]  Besombes, C.; Berka-Zougali, B.; Allaf, K. Instant controlled pressure drop extraction of lavandin essential oils; Fundamentals and experimental studies. J. Chromatogr. A 2010, 1217, 6807–6815.
[23]  Allaf, K.; Besombes, C.; Kristiawan, M.; Sobolik, V. Extraction of Essential oils by instant controlled pressure drop DIC. In Essential Oils and Aromas Green Extraction and Applications; Arvinder Singh Bhalla (JEOBP): Dehra Dun, India, 2009.
[24]  Kristiawan, M.; Sobolik, V.; Allaf, K. Isolation of Indonesian cananga oil using multi-cycle pressure drop process. J. Chromatogr. A 2008, 1192, 306–318.
[25]  Loupy, A. Microwave in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002.
[26]  Ferhat, M.A.; Meklati, B.Y.; Smadja, J.; Chemat, F. An improved microwave Clevenger apparatus for distillation of essential oils from orange peel. J. Chromatogr. A 2006, 1112, 121–126.
[27]  Boelens, M.H.; Jimènez, R. The chemical composition of spanisch myrtle leaf oils. Part I. J. Essent. Oil Res 1991, 3, 173–177.
[28]  Shikhiev, A.S.; Abbasov, R.M.; Mamedova, Z.A. Composition of the essential oil of Myrtus Communis. Chem. Nat. Compd 1978, 14, 455–456.
[29]  Yadegarinia, D.; Gachkar, L.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry 2006, 67, 1249–1255.
[30]  Juki?, M.; Milo?, M. Catalytic oxidation properties of thyme essential oils (Thymus Vulgarae L.). Croat. Chem. Acta 2005, 78, 105–110.
[31]  Pereira, P.C.; Cebola, M.J.; Bernardo-Gil, M.G. Evolution of the yields and composition of essential oil from portuguese myrtle (Myrtus communis L.) through the Vegetative Cycle. Molecules 2009, 14, 3094–3105.
[32]  Alma, M.H.; Mavi, A.; Yildirim, A.; Digrak, M.; Hirata, T. Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum Syriacum L. growing in Turkey. Biol. Pharm. Bull 2003, 26, 1725–1729.
[33]  Kordali, S.; Kotan, R.; Mavi, A.; Cakir, A.; Ala, A.; Yildirim, A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. drancunculus, Artemisia santonicum, and Artemisia spicigera essential oils. J. Agric. Food Chem 2005, 53, 9452–9458.
[34]  Mimica-Dukic, N.; Bo?in, B.; Sokovic, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem 2004, 52, 2485–2489.
[35]  Basile, A.; Senatore, F.; Gargano, R.; Sorbo, S.; Del Pezzo, M.; Lavitola, A.; Ritieni, A.; Bruno, M.; Spatuzzi, D.; Rigano, D.; Vuotto, M.L. Antibacterial and antioxidant activities in Sideritis italic (Miller) Greuter et Burdet essential oils. J. Ethnopharmacol 2006, 107, 240–248.
[36]  Bozin, B.; Mimika-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem 2006, 54, 1822–1828.
[37]  Ozcelik, B.; Lee, J.H.; Min, D.B. Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl. J. Food Sci 2003, 68, 487–490.
[38]  Bekhechi, C.; Atik-Bekkara, F.; Abdelouahid, D.-E. Composition et activité antibactérienne des huiles essentielles d’Origanum glandulosum d’Algérie. Phytothérapie 2008, 6, 153–159.
[39]  Sipailiene, A.; Venskutonis, P.R.; Baranauskiene, R.; Sarkinas, A. Antimicrobial activity of commercial Samples of Thyme and Marjoram Oils. J. Essent. Oil Res 2006, 18, 698–703.
[40]  Kokoska, L.; Polesny, Z.; Rada, V.; Nepovim, A.; Vanek, T. Screening of some Siberian medicinal plants for antimicrobial activity. J. Ethnopharmacol 2002, 82, 51–53.
[41]  Inouye, S.; Yamaguchi, H.; Takizawa, T. Screening of the antibacterial effects of variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J. Infect. Chemother 2001, 7, 251–254.
[42]  Allaf, K.; Allaf, T. Instant Controlled Pressure Drop DIC: From Fundamental to Industrial Applications; Springer: Heidelberg, Germany, 2011.
[43]  Allaf, K. Transfer Phenomena and Industrial Applications; Lebanese University, Faculty of Science: Fanar, Beirut, Lebanon, 1982.
[44]  Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol 1995, 28, 25–30.
[45]  Oki, T.; Tenmyo, O.; Hirano, M.; Tomatsu, K.; Kamei, H. Pradimicins A, B and C: New antifungal antibiotics. II. In vitro and In vivo biological activities. J. Antibiot 1990, 43, 763–770.
[46]  Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavors and Fragrance Volatiles by Glass Capillary Gas Chromatography; Academic Press: New York, NY, USA, 1980.
[47]  Davies, N.-W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24.
[48]  Arctander, S. Perfume and Flavor Chemicals; Allured Publishing Corporation: Carol Stream, IL, USA, 1994.
[49]  Adams, R.P. Identification of Essential Oils Components by Gas Chromatography/Mass Spectrometry, 4th ed ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133