The present study reports the composition and variation of fatty acids, sterols, tocopherols and γ-oryzanol among selected varieties namely Basmati Super, Basmati 515, Basmati 198, Basmati 385, Basmati 2000, Basmati 370, Basmati Pak, KSK-139, KS-282 and Irri-6 of Pakistani rice ( Oryza sativa L). Oil content extracted with n-hexane from different varieties of brown rice seed (unpolished rice) ranged from 1.92% to 2.72%. Total fatty acid contents among rice varieties tested varied between 18240 and 25840 mg/kg brown rice seed. The rice tested mainly contained oleic (6841–10952 mg/kg) linoleic (5453–7874 mg/kg) and palmitic acid (3613–5489 mg/kg). The amounts of total phytosterols (GC and GC-MS analysis), with main contribution from β-sitosterol (445–656 mg/kg), campesterol (116–242 mg/kg), ? 5-avenasterol (89–178 mg/kg) and stigmasterol (75–180 mg/kg) were established to be 739.4 to 1330.4 mg/kg rice seed. The content of α-, γ- and δ-tocopherols as analyzed by HPLC varied from 39.0–76.1, 21.6–28.1 and 6.5–16.5 mg/kg rice seed, respectively. The amounts of different γ-oryzanol components (HPLC data), identified as cycloartenyl ferulate, 24-methylene cycloartanyl ferulate, campesteryl ferulate and β-sitosteryl ferulate, were in the range of 65.5–103.6, 140.2–183.1, 29.8–45.5 and 8.6–10.4 mg/kg rice seed, respectively. Overall, the concentration of these bioactives was higher in the Basmati rice cultivars showing their functional food superiority. In conclusion, the tested varieties of Pakistani rice, especially the Basmati cultivars, can provide best ingredients for functional foods.
References
[1]
Geoffrey, P.W. Dietary Supplements and Functional Foods; Wiley-Blackwell: New York, NY, USA, 2006.
[2]
Shahidi, F. Nutraceuticals and functional food component for disease prevention. Br. Med. J 2009, 328, 211–214.
[3]
Chung, H.S.; Woo, W.S. A quinolone alkaloid with antioxidant activity from the aleurone layer of anthocyanin-pigmented rice. J. Nat. Prod 2001, 64, 1579–1580.
[4]
Iwatsuki, K.; Akihisa, T.; Tokuda, H.; Ukiya, M.; Higashihara, H.; Mukainaka, T. Sterol ferulates, sterols, and 5-alk(en)ylresorcinols from wheat, rye, and corn bran oils and their inhibitory effects on Epstein-Barr virus activation. J. Agric. Food Chem 2003, 51, 6683–6688.
[5]
Suzuki, R.; Okada, Y.; Okuyama, T. Two flavone C-glycosides from the style of Zea mays with glycation inhibitory activity. J. Nat. Prod 2003, 66, 564–565.
[6]
Han, S.J.; Ryu, S.N.; Kang, S.S. A new 2-arylbenzofuran with antioxidant activity from the black colored rice (Oryza sativa L.) bran. Chem. Pharm. Bull 2004, 52, 1365–1366.
[7]
Wenzig, E.; Kunert, O.; Ferreira, D.; Schmid, M.; Schuhly, W.; Bauer, R. Flavonolignans from Avena sativa. J. Nat. Prod 2005, 68, 289–292.
[8]
Chung, I.M.; Ali, M.; Ahmad, A.; Lim, J.D.; Yu, C.Y.; Kim, J.S. Chemical constituents of rice (Oryza sativa L.) hulls and their herbicidal activity against duckweed. Phytochem. Anal 2006, 17, 36–45.
[9]
Hyun, J.W.; Chung, H.S. Cyanidin and malvidin from Oryza sativa cv. Heugjinjubyeo mediate cytotoxicity against human monocytic leukemia cells by arrest of G2/M phase and induction of apoptosis. J. Agric. Food Chem 2004, 52, 2213–2217.
[10]
Bauernfeind, J. Vitamin E: A Comprehensive Treatise. Tocopherols in Foods; Machlin, L.J., Ed.; Marcel Dekker: New York, NY, USA, 1980; pp. 99–167.
[11]
Filya, I. Nutritive value of whole crop wheat silage harvested at three stages of maturity. Anim. Feed Sci. Technol 2003, 103, 85–95.
[12]
Nadeau, E. Effects of plant species, stage of maturity and additive on the feeding value of whole-crop cereal silage. J. Sci. Food Agric 2007, 87, 789–801.
[13]
Hamauzu, Y.; Chachin, K. Effect of high temperature on the postharvest biosynthesis of carotenes and α-tocopherol in tomato fruit. J. Jpn. Soc. Hort. Sci 1995, 63, 879–886.
[14]
Rupérez, F.J.; Martin, D.; Herrera, E.; Barbas, C. Chromatographic analysis of alpha-tocopherol and related compounds in various matrices. J. Chromatogr. A 2001, 935, 45–69.
[15]
Eitenmiller, R.; Lee, J. Vitamin E: Food Chemistry, Composition and Analysis; Marcel Dekker Inc: New York, NY, USA, 2004.
[16]
Chatha, S.A.S.; Hussain, A.I.; Zubair, M.; Khosa, M.K. Analytical characterization of rice (Oryza sativa) bran and bran oil from different agro-ecological regions. Pak. J. Agric. Sci 2011, 48, 243–249.
[17]
Kiing, S.; Rajan, P.Y.; Wong, S. Effect of germination on γ-oryzanol content of selected Sarawak rice cultivars. Am. J. Appl. Sci 2009, 6, 1658–1661.
[18]
Patel, M.; Naik, S.N. Gamma-oryzanol from rice bran oil—A review. J. Sci. Ind. Res 2004, 63, 569–578.
[19]
Zhou, M.; Tabb, M.; Sadatrafiei, A.; Grun, F.; Sun, A.; Blumberg, B. Hyperforin, the active component of St. John’s wort, induces IL-8 expression in human intestinal epithelial cells via a MAPK-dependent, NF-kappaB-independent pathway. J. Clin. Immunol 2004, 24, 623–636.
[20]
Holtekjolen, A.K.; Uhlen, A.K.; Brathen, E.S.; Knutsen, S.H. Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chem 2006, 94, 348–358.
[21]
Nicolosi, R.J.; Rogers, E.J.; Ausman, L.M.; Othoefer, F.T. Rice Bran Oil and its Health Benefits. In Rice Science and Technology; Marshall, W.E., Wadsworth, J.I., Eds.; Marcel Dekker: New York, NY, USA, 1994; pp. 350–421.
[22]
Khatoon, S.; Krishna, A.G.G. Fat soluble nutraceuticals and fatty acid composition of selected Indian rice varieties. J. Am. Oil Chem. Soc 2004, 81, 939–943.
[23]
Shin, T.; Godber, J.S.; Martin, D.E.; Wells, J.H. Hydrolytic stability and changes in E vitamers and oryzanol of extruded rice bran during storage. J. Food Sci 1997, 62, 704–708.
[24]
Vissers, M.N.; Zock, P.L.; Meijer, G.W.; Katan, M.B. Effect of plant sterols from rice bran oil and triterpene alcohols from sheanut oil on serum lipoprotein concentrations in humans. Am. J. Clin. Nutr 2000, 72, 1510–1515.
[25]
Rohrer, C.A.; Siebenmorgen, T.J. Nutraceutical concentrations within the bran of various rice kernel thickness fractions. Biosyst. Eng 2004, 88, 453–460.
[26]
Iqbal, S.; Bhanger, M.I.; Anwar, F. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem 2005, 93, 265–272.
[27]
Parker, R.A.; Pearce, B.C.; Clark, R.W.; Gordon, D.A.; Wright, J.J. Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem 1993, 268, 11230–11238.
[28]
Wada, S.; Satomi, Y.; Murakoshi, M.; Noguchi, N.; Yoshikawa, T.; Nishino, H. Tumor suppressive effects of tocotrienol in vivo and in vitro. Cancer Lett 2005, 229, 181–191.
[29]
Rukmini, C.; Raghuram, T.C. Nutritional and biochemical aspects of the hypolipidemic action of rice bran oil. J. Am. Coll. Nutr 1991, 10, 593–601.
[30]
Kaimal, T.B.N. Gamma-oryzanol from rice bran oil. J. Oil Technol. Assoc. India 1999, 31, 83–93.
[31]
Rogers, E.J.; Rice, S.M.; Romancyzk, L.J. Identification and quantification of γ-oryzanol components and simultaneous assessment of tocols in rice bran oil. J. Am. Oil Chem. Soc 1993, 70, 301–307.
[32]
Xu, Z.; Na, H.; Godber, J.S. Antioxidant activity of tocopherols, tocotrienols, and gamma-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2-azobis(2-methylpropionamidine) dihydrochloride. J. Agric. Food Chem 2001, 49, 2077–2082.
[33]
Lloyd, B.J.; Siebenmorgen, T.J.; Beers, K.W. Effects of commercial processing on antioxidants in rice bran. Cereal Chem 2000, 77, 551–555.
[34]
Singh, N.; Kaur, L.; Sodhi, N.S.; Sekhon, K.S. Physicochemical, cooking and textural properties of milled rice from different Indian rice cultivars. Food Chem 2005, 89, 253–259.
[35]
Storck, C.R.; Silva, L.P.D.; Fagundes, C.A.A. Categorizing rice cultivars based on differences in chemical composition. J. Food Comp. Anal 2005, 18, 333–341.
[36]
Noppamas, M. The Investigation of G-Oryzanol and Vitamin E Content in Thai Rice Varieties. Master Thesis, King Mongkuts University of Technology Thonburi, Bangkok, Thailand, 2002.
[37]
Boonsit, P.; Karladee, D.; Phongpiachan, P. Gamma oryzanol content in purple rice of Thailand local genotypes. Tropentag, 11–13 October 2006; Available online: http://www.tropentag.de/2006/abstracts/full/161.pdf , accessed on 17 October 2011.
[38]
Przybylski, R.; Klensporf-Pawlik, D.; Anwar, F.; Rudzinska, M. Lipid components of North American wild rice (Zizania palustris). J. Am. Oil Chem. Soc 2009, 86, 553–559.
[39]
Anwar, F.; Anwer, T.; Mahmood, Z. Methodical characterization of rice (Oryza sativa) bran oil from Pakistan. Grasas Aceites 2005, 56, 125–134.
[40]
Rossell, J.B.; Vegetable, Oils. Fats. In Analysis of Oilseeds, Fats and Fatty Foods; Rossel, J.B., Pritchard, J.L.R., Eds.; Elsevier Applied Science Publishers: New York, NY, USA, 1991; pp. 308–319.
[41]
Hemavathy, J.; Prabhakar, J.V. Lipid composition of Rice (Oryza sativa L.) bran. J. Am. Oil Chem. Soc 1987, 64, 1016–1019.
[42]
Lilitchan, S.; Tangprawat, C.; Aryusuk, K.; Krisnangkura, S.; Chokmoh, S.; Krisnangkura, K. Partial extraction method for the rapid analysis of total lipids and γ-oryzanol contents in rice bran. Food Chem 2008, 106, 752–759.
[43]
Zhou, Z.; Blanchard, C.; Helliwell, S.; Robards, K. Fatty acid composition of three rice varieties following storage. J. Cereal Sci 2003, 37, 327–335.
[44]
Piironen, V.; Lampi, A. Occurrence and Levels of Phytosterols in Foods. In Phytosterols as Functional Food Components and Nutraceuticals; Dutta, P.C., Ed.; Marcel Dekker: New York, NY, USA, 2004; pp. 1–32.
[45]
Schaefer, E.J. Lipoproteins, nutrition, and heart disease. Am. J. Clin. Nutr 2002, 75, 191–212.
[46]
Ostlund, R.E. Phytosterols in human nutrition. Ann. Rev. Nutr 2002, 22, 533–549.
[47]
Weihrauch, J.L.; Gardner, J.M. Sterol content of foods of plant origin. J. Am. Diet. Assoc 1978, 73, 39–47.
[48]
Toivo, J.; Lampi, A.M.; Aalto, S.; Piironen, V. Factors affecting sample preparation in the gas chromatographic determination of plant sterols in whole wheat. Food Chem 2000, 68, 239–245.
[49]
Kuroda, N.; Ohnishi, M.; Fujino, Y. Sterol lipids in rice bran. Cereal Chem 1977, 54, 997–1006.
[50]
Gaydou, E.M.; Raonizafinimanana, R. Quantitative analysis of fatty acids and sterols in Malagasy rice bran oils. J. Am. Oil Chem. Soc 1980, 57, 141–142.
[51]
Vissers, M.N.; Zock, P.L.; Meijer, G.W.; Katan, M.B. Effect of plant sterols from rice bran oil and triterpene alcohols from sheanut oil on serum lipoprotein concentrations in humans. Am. J. Clin. Nutr 2000, 72, 1510–1515.
[52]
Nesaretnam, K.; Stephen, R.; Dils, R.; Darbre, P. Tocotrienols inhibit the growth of human breast cancer cells irrespective of estrogen receptor status. Lipids 1998, 33, 461–469.
[53]
Panfili, G.; Fratianni, A.; Criscio, T.D.; Marconi, E. Tocol and β-glucan levels in barley varieties and in pearling by-products. Food Chem 2008, 107, 84–91.
[54]
Phoency, L.; Ken, Y.L.; Shin, L.; Hua, H.C. Phytochemicals and antioxidant properties of solvent extracts from Japonica rice bran. Food Chem 2009, 117, 538–544.
[55]
Yawadio, R.; Tanimori, S.; Morita, N. Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem 2007, 101, 1616–1625.
[56]
Qureshi, A.A.; Mo, H.; Packer, L.; Peterson, D.M. Isolation and identification of novel tocotrienols from rice bran with hypocholesterolemic, antioxidant, and antitumor properties. J. Agric. Food Chem 2000, 48, 3130–3140.
[57]
Kim, J.S.; Godber, J.S. Oxidative stability and vitamin E levels increased in restructured beef roasts with added rice bran oil. J. Food Qual 2001, 24, 17–26.
[58]
Ha, T.; Kob, S.; Leeb, S.; Kimc, H.; Chung, S.; Kima, S.; Yoond, H.; Kim, I. Changes in nutraceutical lipid components of rice at different degrees of milling. Eur. J. Lipid Sci. Technol 2006, 108, 175–181.
[59]
Yoshie, A.; Kanda, A.; Nakamura, T.; Igusa, H.; Hara, S. Comparison of gamma-oryzanol contents in crude rice bran oils from different sources by various determination methods. J. Oleo Sci 2009, 58, 511–518.
[60]
Nystrom, L.; Achrenius, T.; Lampi, A.A.; Moreau, R. A comparison of the antioxidant properties of steryl ferulates with tocopherol at high temperatures. Food Chem 2007, 101, 947–954.
[61]
Xu, Z.; Godber, J.S. Purification and identification of components of gamma-oryzanol in rice bran oil. J. Agric. Food Chem 1999, 47, 2724–2728.
[62]
Xu, Z.; Godber, J.S. Comparison of supercritical fluid and solvent extraction methods in extracting gamma-oryzanol from rice bran. J. Am. Oil Chem. Soc 2000, 77, 547–551.
[63]
Norton, R.A. Quantitation of steryl ferulate and p-coumarate esters from corn and rice bran. Lipids 1995, 30, 269–274.
[64]
Xu, Z.; Godber, J.S. Antioxidant activities of major components of gamma-oryzanol from rice bran using a linolenic acid model. J. Am. Oil Chem. Soc. 2001, 78, 465–469.
[65]
Azrina, A.; Maznah, I.; Azizah, A.H. Extraction and determination of oryzanol in rice bran of mixed herbarium UKMB; AZ 6807: MR 185, AZ 6808: MR 211, AZ6809: MR 29. ASEAN Food J 2008, 15, 89–96.
[66]
IUPAC. Standard Methods for the Analysis of Oils, Fats and Derivatives, 6th ed ed.; Pergamon Press: Oxford, UK, 1979; pp. 9–145.