全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recent Advances of Flowering Locus T Gene in Higher Plants

DOI: 10.3390/ijms13033773

Keywords: flowering hormone, FT homologous genes, expression of products

Full-Text   Cite this paper   Add to My Lib

Abstract:

Flowering Locus T ( FT) can promote flowering in the plant photoperiod pathway and also facilitates vernalization flowering pathways and other ways to promote flowering. The expression of products of the FT gene is recognized as important parts of the flowering hormone and can induce flowering by long-distance transportation. In the present study, many FT-like genes were isolated, and the transgenic results show that FT gene can promote flowering in plants. This paper reviews the progress of the FT gene and its expression products to provide meaningful information for further studies of the functions of FT genes.

References

[1]  Tan, F.C.; Swain, S.M. Genetics of flower initiation and development in annual and perennial plants. Physiol. Plant 2006, 128, 8–17.
[2]  Mouradov, A.; Cremer, F.; Coupland, G. Control of flowering time: Interacting pathways as a basis for diversity. Plant Cell 2002, 14, 111–130.
[3]  Komed, Y. Genetic regulation of time to flower in Arabidopsis thaliana. Annu. Rev. Plant Biol 2004, 55, 521–535.
[4]  Lemmetyinen, J.; Hassinen, M.; Elo, A. Functional characterization of SEPALLATA3 and agamous orthologues in silver birch. Physiol. Plant 2004, 121, 149–162.
[5]  Kojima, S.; Takahashi, Y.; Kobayashi, Y.; Monna, L.; Sasaki, T.; Araki, T.; Yano, M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 2002, 43, 1096–1105.
[6]  Endo, T.; Shimada, T.; Fujii, H.; Kobayashi, Y.; Araki, T.; Omura, M. Ectopic expression of an FT homolog from citrus confers an early fowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 2005, 14, 703–712.
[7]  Lifschitz, E.; Eviatar, T.; Rozman, A.; Shalit, A.; Goldshmidt, A.; Amsellem, Z.; Alvarez, J.P.; Eshed, Y. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl. Acad. Sci. USA 2006, 103, 6398–6403.
[8]  Bohleninus, H.; Huang, T.; Charbonnel-Campaa, L.; Brunner, A.M.; Jansson, S.; Strauss, S.H.; Nilsson, O. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 2006, 312, 1040–1043.
[9]  Kobayashi, Y.; Weigel, D. Move on up, it’s time for change mobile signals controlling photoperiod dependent flowering. Genes Dev 2007, 21, 2371–2384.
[10]  Zeevaart, J.A.D. Leaf produced floral signals. Curr. Opin. Plant Biol 2008, 11, 541–547.
[11]  Sachs, J. Wirkung des lichtes auf die blütenbilding unter vermittlung der laubbl?tter. Bot. Ztg 1865, 23.
[12]  Chailakhyan, M.K. New facts in support of the hormonal theory of plant development. C. R. Acad. Sci. URSS 1936, 13, 79–83.
[13]  Huang, T.; Bohlenius, H.; Eriksson, S. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 2005, 309, 1694–1696.
[14]  Corbesier, L.; Vincent, C.; Jang, S. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 2007, 316, 1030–1033.
[15]  Abe, M.; Kobayashi, Y.; Yamamoto, S.; Daimon, Y.; Yamaguchi, A.; Ikeda, Y.; Ichinoki, H.; Notaguchi, M.; Goto, K.; Araki, T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 2005, 309, 1052–1056.
[16]  Wigge, P.A.; Kim, M.C.; Jaeger, K.E.; Busch, W.; Schmid, M.; Lohmann, J.U.; Weigel, D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 2005, 309, 1056–1059.
[17]  Aki, T.; Shigyo, M.; Nakano, R. Nanoscale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol 2008, 49, 767–790.
[18]  Giavalisco, P.; Kapitza, K.; Kolasa, A. Towards the proteome of Brassica napus phloem sap. Proteomics 2006, 6, 896–909.
[19]  Lin, M.; Belanger, H.; Lee, Y. Flowering Locus T protein may act as the long-distance florigenic signal in the Cucurbits. Plant Cell 2007, 19, 1488–1506.
[20]  Turck, F.; Fornara, F.; Coupland, G. Regulation and identity of florigen: Flowering Locus T moves center stage. Annu. Rev. Plant Biol 2008, 59, 573–594.
[21]  Mathieu, J.; Warthmann, N.; Kuttner, F. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr. Biol 2007, 17, 1055–1060.
[22]  Jaeger, K; Wigge, P. FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 2007, 17, 1050–1054.
[23]  Tamaki, S.; Matsuo, S.; Wong, H.L.; Yokoi, S.; Shimamoto, K. Hd3a protein is a mobile flowering signal in rice. Science 2007, 316, 1033–1036.
[24]  Kardailsky, I.; Shukla, V.K.; Ahn, J.H.; Dagenais, N.; Christensen, S.K.; Nguyen, J.T.; Chory, J.; Harrison, M.J.; Weigel, D. Activation tagging of the floral inducer FT. Science 1999, 286, 1962–1965.
[25]  Samaeh, A.; Onouehi, H.; Gold, S.E. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 2000, 88, 1613–1616.
[26]  Yoo, S.K.; Chung, K.S.; Kim, J.; Lee, J.H.; Hong, S.M.; Yoo, S.J.; Yoo, S.Y.; Lee, J.S.; Ahn, J.H. CONSTANS activates Suppressor of Overexpression of Constans 1 through Flowering Locus T to promote flowering in Arabidopsis. Plant Physiol 2005, 139, 770–778.
[27]  Lee, J.; Lee, I. Regulation and function of SOC1, a flowering pathway integrator. J. Exp. Bot 2010, 61, 2247–2254.
[28]  Sawa, M.; Kay, S.A. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2011, 108, 11698–11703.
[29]  Gyllenstrand, N.; Clapham, D.; Kallman, T.; Lagercrantz, U. A Norway spruce Flowering Locus T homolog is implicated in control of growth rhythm in conifers. Plant Physiol 2007, 144, 248–257.
[30]  Bastow, R.J.S.; Mylne, C.; Lister, Z. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 2004, 427, 164–167.
[31]  Michaels, S.D; Amasino, R.M. Loss of Flowering Locus C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 2001, 13, 935–941.
[32]  Sheldon, C.C.; Conn, A.B.; Dennis, E.S. Different regulatory regions are required for the vernalization induced repression of Flowering Locus C and for the epigenetic maintenance of repression. Plant Cell 2002, 14, 2527–2537.
[33]  Kumar, S.V.; Wigge, P.A. H2A. Z-Containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 2010, 140, 136–147.
[34]  Frankliin, K.A.; Lee, S.H.; Patel, D.; Kumar, S.V.; Spartz, A.K.; Gu, C.; Ye, S.; Yu, P.; Breen, G.; Cohen, J.D.; et al. Phytochrome-intreacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl. Acad. Sci. USA 2011, 108, 20231–20235.
[35]  Faure, S.; Higgins, J.; Turner, A.; Laurie, D.A. The Flowering Locus T-like gene family in Barley (Hordeum vulgare). Genetics 2007, 176, 599–609.
[36]  Carmona, M.J.; Calonje, M.; Martinez-Zapater, J.M. The FT/TFL1 gene family in grapevine. Plant Mol. Biol 2007, 63, 637–650.
[37]  Kotoda, N.; Hayashi, H.; Suzuki, M.; Igarashi, M.; Hatsuyama, Y.; Kidou, S.; Igasaki, T.; Nishiguchi, M.; Yano, K.; Shimizu, T.; et al. Molecular characterization of Flowering Locus T-Like genes of apple (Malus domestica Borkh.). Plant Cell Physiol 2010, 51, 561–575.
[38]  Matsuda, N.; Ikeda, K.; Kurosaka, M.; Takashina, T.; Isuzugawa, K.; Endo, T.; Omura, M. Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J. Japan. Soc. Hort. Sci 2009, 78, 410–416.
[39]  Navarro, C.; Abelenda, J.A.; Cruz-Oró, E.; Cuéllar, C.A.; Tamaki, S.; Silva, J.; Shimamoto, K.; Prat, S. Control of flowering and storage organ formation in potato by Flowering Locus T. Nature 2011, 10, 119–123.
[40]  Hecht, V.; Laurie, R.E.; Vander Schoor, J.K.; Ridge, S.; Knowles, C.L.; Liew, L.C.; Sussmilch, F.C.; Murfet, I.C.; Macknight, R.C.; Weller, J.L. The pea GIGAS gene is a Flowering Locus T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 2011, 23, 147–161.
[41]  Pin, P.A.; Benlloch, R.; Bonnet, D.; Wremerth-Weich, E.; Kraft, T.; Gielen, J.J.L.; Nilsson, O. An antagonistic pair of FT homologs mediates the control flowering time in sugar beet. Science 2010, 330, 1397–1400.
[42]  Hayama, R.; Agashe, B.; Luley, E.; King, R.; Coupland, G. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 2007, 19, 2988–3000.
[43]  Cháb, D.; Kolar, J.; Olson, M.S.; Storchova, H. Two Flowering Locus T (FT) homologs in chenopodium rubrum differ in expression patterns. Planta 2008, 228, 929–940.
[44]  Hou, C.J.; Yang, C.H. Functional analysis of FT and TFL1 orthologs from orchid (Oncidium gower ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol 2009, 50, 1544–1557.
[45]  Blackman, B.K.; Strasburg, J.L.; Raduski, A.R.; Michaels, S.D.; Rieseberg, L.H. The role of recently derived FT paralogs in sunflower domestication. Curr. Biol. 2010, 20, 629–635.
[46]  Matsuda, N.; Ileda, K.; Kurosaka, M.; Takashina, T.; Isuzugawa, K.; Endo, T.; Omura, M. Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J. Japan. Soc. Hort. Sci 2009, 78, 410–416.
[47]  Zhang, H.; Harry, D.E.; Ma, C.; Yuceer, C.; Hsu, C.Y.; Vikram, V.; Shevchenko, O.; Etherington, E.; Strauss, S.H. Precocious flowering in trees: the Flowering Locus T gene as a research and breeding tool in Populus. J. Exp. Bot 2010, 61, 2549–2560.
[48]  Kikuchi, R.; Kawahigashi, H.; Oshima, M.; Andoand, T.; Handa, H. The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley. J. Exp. Bot 2012, 63, 773–784.
[49]  Danilevskaya, O.N.; Meng, X.; Hou, Z.; Ananiev, E.V.; Simmons, C.R. A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 2008, 146, 250–264.
[50]  Xi, W.; Yu, H. An expanding list: another flowering time gene, Flowering Locus T, regulates flower development. Plant Signal. Behav 2009, 4, 1142–1144.
[51]  Pnueli, L.; Gutfinger, T.; Hareven, D.; Ben-Naim, O.; Ron, N.; Adir, N.; Lifshitz, E. Tomato SP interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 2001, 131, 2687–2702.
[52]  Banfield, M.J.; Brady, R.L. The structure of Antirrhinum Centroradialis protein (CEN) suggests a role as a kinase regulator. Mol. Biol. Evol 2000, 297, 1159–1170.
[53]  Taoka, K.; Ohki, I.; Tsuji, H.; Furuita, K.; Hayashi, K.; Yanase, T.; Yamaguchi, M.; Nakashima, C.; Purwestri, Y.A.; Tamaki, S.; et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 2011, 476, 332–337.
[54]  Liu, X.X.; Steve, J.; Li, C.Y. Research on moving ability and function of Arabidopsis Flowering Locus T. J. Northwest A & F Univ. (Nat. Sci. Ed.) 2008, 36, 180–185.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133